PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
The International Conference on Semiconductor Mid-IR Materials and Optiics (SMMO 2010) ; (21-23.10.2010 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The antimonide laser heterostructures growth technology using MBE epitaxy is currently well-developed, while MOVPE method is still being improved. It is known that the principal problem for MOVPE is the oxygen and carbon contamination of aluminium containing waveguides and claddings. The solution would be to apply a proper aluminium precursor. In this study we present the results of metal-organic epitaxy of In- and Al-containing layers and quantum well structures composing antimonide lasers devices. Special emphasis was put on the aluminium precursor and its relation to AlGaSb and AlGaAsSb materials properties. The crystalline quality of the layers grown with two different Al precursors was compared, very good structural quality films were obtained. The results suggested a substantial influence of precursors pre-reactions on the epitaxial process. The oxygen contamination was measured by SIMS, which confirmed its dependence on the precursor choice. We also optimised the GaSb substrate thermal treatment to deposit high quality GaSb homoepitaxial layers. Quaternary InGaAsSb layers were obtained even within the predicted miscibility gap, when arsenic content reached high above 10% values. InGa(As)Sb/AlGa(As)Sb quantum wells were grown and their optical properties were characterised by photoluminescence and photoreflectance spectroscopy. Type-I quantum wells showed a fundamental optical transition in the 1.9-2.1 µm range at room temperature. The epitaxial technology of the structures was subjected to an optimisation procedure. The investigated layers and heterostructures can be considered for application in laser devices.
Słowa kluczowe
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • [1] J.G. Kim, L. Shterengas, R.U. Martinelli, and G.L. Belenky: High-power room-temperature continuous wave operation of 2.7 and 2.8 µm In(Al)GaAsSb/GaSb diode lasers. Appl. Phys. Lett. 83, 1926-1928, 2003.
  • [2] M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner: GaSb-based 2.X µm quantum-well diode lasers with low beam divergence and high output power. Appl. Phys. Lett. 88, 081115-081117, 2006.
  • [3] A. Joullie and P. Christol: GaSb-based mid-infrared 2-5-µm laser diodes. CR Phys. 4, 621-637, 2003.
  • [4] C.A. Wang and H.K. Choi: GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers grown by organometallic vapour phase epitaxy. Appl. Phys. Lett. 70, 802-804, 1997.
  • [5] C.A. Wang: Organometallic vapour phase epitaxial growth of AlSb-based alloys. J. Cryst. Growth 170, 725-731, 1997.
  • [6] C.A. Wang, K.F. Jensen, A.C. Jones, and H.K. Choi: n-AlGaSb and GaSb/AlGaSb double-heterostructure lasers grown by organometallic vapour phase epitaxy. Appl. Phys. Lett. 68, 400-402, 1996.
  • [7] C.A. Wang and H.K. Choi: OMVPE growth of GaInAsSb/AlGaAsSb for quantum-well diode lasers. J. Electron. Mater. 26, 1231-1236, 1997.
  • [8] Z. Yin and X. Tang: A review of energy bandgap engineering in III-V semiconductor alloys for mid-infrared laser applications. Solid-State Electron. 51, 6-15, 2007.
  • [9] C.A. Wang: Progress and continuing challenges in GaSb-based III-V alloys and heterostructures grown by organometallic vapour-phase epitaxy. J. Cryst. Growth 272, 664-681, 2004.
  • [10] P.S. Dutta and H.L. Bhat: The physics and technology of gallium antimonide: An emerging optoelectronic material. J. Appl. Phys. 81, 5821-5870, 1997.
  • [11] B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, and M.G. Ancona: Antimonide-based compound semiconductor electronics: A review. Solid-State Electron. 49, 1875-1895, 2005.
  • [12] E. Plis, J.B. Rodriguez, H.S. Kim, G. Bishop, Y.D. Sharma, L.R. Dawson, S. Krishn, S.J. Lee, C.E. Jones, and V. Gopal: Type II InAs/GaSb strain layer superlattice detectors with p-on-n polarity. Appl. Phys. Lett. 91, 133512-133514, 2007.
  • [13] J.G. Cederberg, M.J. Hafich, R.M. Biefeld, and M. Palmisiano: The preparation of InGa(As)Sb and Al(Ga)AsSb films and diodes on GaSb for thermophotovoltaic applications using metal-organic chemical vapour deposition. J. Cryst. Growth 248, 289-295, 2003.
  • [14] M.G. Mauk and V.M. Andreev: GaSb-related materials for TPV cells. Semicond. Sci. Tech. 18, 191-201, 2003. A. Aardvark, N.J. Mason, and P.J. Walker: The growth of antimonides by MOVPE. Prog. Cryst. Growth Ch. 35, 207-241, 1997.
  • [15] F. Dimroth, C. Agert, and A.W. Bett: Growth of Sb-based materials by MOVPE. J. Cryst. Growth 248, 265-273, 2003.
  • [16] Ch. Giesen, A. Szymakowski, S. Rushworth, M. Heuken, and K. Heime: MOVPE of AlGaAsSb using TTBAl as an alternative aluminium precursor. J. Cryst. Growth 221, 450-455, 2000.
  • [17] R.M. Biefeld: The metal-organic chemical vapour deposition and properties of III-V antimony-based semiconductor materials. Mater. Sci. Eng. 36, 105-142, 2002.
  • [18] J.J. Hill, A.A. Aquino, C.P.A. Mulcahy, N. Harwood, A.C. Jones, and T.S. Jones: The adsorption and thermal decomposition of trimethylaluminium and dimethylaluminium hydride on GaAs(100). Surf. Sci. 340, 49-56, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0022-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.