PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CAD system for automatic analysis of CT perfusion maps

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.
Twórcy
autor
  • Institute of Computer Scienve and Computer Methods, Pedagogical University of Krakow, 2 Podchorążych Eve, 30-0843 Kraków, Poland
autor
Bibliografia
  • [1] M. Sasaki, K. Kudo, and H. Oikawa: CT perfusion for acute stroke: Current concepts on technical aspects and clinical applications. Int. Congr. Ser. 1290, 30-36, 2006.
  • [2] F.G. Aksoy and H. L. Michael: Dynamic contrast-enhanced brain perfusion imaging: Technique and clinical applications. Semin. Ultrasound CT 21, 462-477, 2000.
  • [3] K. L. Zierler: Equations for measuring blood flow by external monitoring of radioisotopes. Circ. Res. 16, 309-321, 1965.
  • [4] M. Koenig, E. Klotz, and L. Heuser: Perfusion CT in acute stroke: characterization of cerebral ischemia using parameter images of cerebral blood flow and their therapeutic relevance. Clinical experiences. Electromedica 66, 61-67, 1998.
  • [5] W. L. Nowinski, G. Qian, and K. N. Bhanu Prakash: Analysis of ischemic stroke MR images by means of brain atlases of anatomy and blood supply territories. Acad. Radiol. 13, 1025-1034, 2006.
  • [6] W. L. Nowinski, G. Qian, K. N. Bhanu Prakash, Q. Hu, and A. Aziz: Fast talairach transformation for magnetic resonance neuroimages. J. Comput. Assist. Tomo. 30, 2006.
  • [7] P. Thompson, M. Mega, K. Narr, E. Sowell, R. Blanton, and A. Toga: Brain image analysis and atlas construction. Handbook of Medical Imaging 17, SPIE, 1066-1119, 2000.
  • [8] A. Bardera, I. Boada, and M. Feixas: A framework to assist acute stroke diagnosis. Vision, Modelling, and Visualization (VMV 2005), Erlangen, 2005.
  • [9] A. Przelaskowski, G. Ostrek, and K. Sklinda: Ischemic stroke monitor as diagnosis assistant for CT examinations. Elektronika: Konstrukcje, Technologie, Zastosowania 49, 104-114, 2008.
  • [10] A. Przelaskowski, K. Sklinda, G. Ostrek, R. Jóźwiak, and J. Walecki: Computer - aided diagnosis in hyper-acute ischemic stroke. Prog. Neuroradiol., 69-78, 2009.
  • [11] A. Przelaskowski, G. Ostrek, K. Sklinda, J. Walecki, and R. Jóźwiak: Stroke slicer for CT-based automatic detection of acute ischemia. Adv. Soft. Comp. 3, 447-454, 2009.
  • [12] T. Hachaj: The registration and atlas construction of noisy brain computer tomography images based on free form deformation technique. Bio-Algorithms and Med-Systems, Collegium Medicum - Jagiellonian University. (in press)
  • [13] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE T. Med. Imaging 18, 712-721, 1999.
  • [14] F. Ino, K. Ooyama, and K. Hagihara: A data distributed parallel algorithm for nonrigid image registration. Parallel Comput. 31, 19-43, 2005.
  • [15] E. Bardinet, L. D. Cohen, and N. Ayache: Tracking and motion analysis of the left ventricle with deformable superquadrics. Med. Image Anal. 1, 129-149, 1996.
  • [16] J. D. Eastwood, M. H. Lev, T. Azhari, T. Y. Lee, and J. M. Provenzale: CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222, 227-236, 2002.
  • [17] E. G. Hoeffner, I. Case, R. Jain, S. K. Gujar, G. V. Shah, J. P. Deveikis, R. C. Carlos, B. G. Thompson, M. R. Harrigan, and S. K. Mukherji: Cerebral perfusion CT: technique and clinical applications. Radiology 231, 632-644, 2004.
  • [18] R. E. Latchaw, H. Yonas, and G. J. Hunter: Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 34, 1084-1104, 2003.
  • [19] M. Sasaki, Procedure Guidelines for CT/MR Perfusion Imaging 2006, Joint Committee for the Procedure Guidelines for CT/MR Perfusion Imaging, http://mr-proj2.umin.jp/data/guidelineCtpMrp2006-e.pdf
  • [20] M. Koenig, M. Kraus, C. Theek, E. Klotz, W. Gehlen, and L. Heuser: Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT, Stroke. A Journal of Cerebral Circulation 32, 431-437, 2001.
  • [21] M. H. Lev, A. Z. Segal, J. Farkas, S. T. Hossain, C. Putman, G. J. Hunter, R. Budzik, G. J. Harris, F. S. Buonanno, M. A. Ezzeddine, Y. Chang, W. J. Koroshetz, R. G. Gonzalez, and L. H. Schwamm: Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: Prediction of final infarct volume and clinical outcome. Stroke 32, 2021, 2001.
  • [22] K. W. Muir, A. Buchan, R. von Kummer, J. Rother, and J. C. Baron: Imaging of acute stroke. Lancet Neurol. 5, 755-768, 2006.
  • [23] T. Hachaj: The unified algorithm for detection potential lesions in dynamic perfusion maps CBF, CBV and TTP. J. Med. Inf. Technol. 12, 117-122, 2008.
  • [24] T. Hachaj: An algorithm for detecting lesions in CBF and CBV perfusion maps. Bio-Algorithms and Med-Systems/Collegium Medicum, Jagiellonian University. (in press)
  • [25] Siemens AG, Clinical Applications. Application Guide. Software Version syngo CT 2007, Siemens Medical, 2006.
  • [26] A. Parraga, M. De Craene, J. Pettersson, A. Susin, and B. Macq: Non-rigid registration methods assessment of 3D CT images for head-neck radiotherapy. Proc. SPIE 6512, 651214, 2007.
  • [27] S. Bodzioch and M. R. Ogiela: New approach to gallbladder ultrasonic images analysis and lesions recognition. Computerized Medical Imaging and Graphics 33, 154-170, 2009.
  • [28] M. R. Ogiela and R. Tadeusiewicz: Modern computational intelligence methods for the interpretation of medical images. Stud. Comp. Intell. 84, Springer 2008.
  • [29] R. Tadeusiewicz and M. R. Ogiela, Medical Image Understanding Technology, Springer Verlag, Berlin-Heidelberg, 2004.
  • [30] L. K. Nielsen, Elastic Registration of Medical MR Images, Cand. Scient. Thesis in Computational Science, 2003. Retrieved April 17, 2007, from Matematisk Institute website: http://www.mi.uib.no/~tai/thesis/nielsen.pdf
  • [31] D. Allchin: Error types. Perspectives on Science 9, 38-59, 2001.
  • [32] J. Modersitzki, Numerical Methods for Image Registration, Oxford University Press, 2004.
  • [33] H. M. Duvernoy, P. Bourgouin, and J. L. Vannson, The Human Brain: Surface, Three- dimensional Sectional Anatomy with MRI, and Blood Supply, Springer, 1999.
  • [34] M. R. Ogiela, R. Tadeusiewicz, and M. Trzupek: Picture grammars in classification and semantic interpretation of 3D coronary vessels visualisations. Opto-Electron. Rev. 17, 200-210, 2009.
  • [35] L. Ogiela: UBIAS systems for cognitive interpretation and analysis of medical images. Opto-Electron. Rev. 17, 166-179, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0020-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.