Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of the frequency f of applied ac electric field on the time dependence of electric field induced deformations of homeotropic nematic layers is studied numerically. Three kinds of nematic liquid crystals were considered: – non-flexoelectric nematic with negative dielectric anisotropy, ∆ɛ < 0 – dielectrically compensated nematic (∆ɛ = 0) possessing flexoelectric properties determined by the positive sum of flexoelectric coefficients e = e₁₁ + e₃₃ > 0 – nematic characterised by both ∆ɛ < 0 and e > 0. It was found that at sufficiently low frequencies, the deformations varied with time. The deformations of purely dielectric nature had the period 1/(2f). When the frequency was increased, a stationary director distribution was achieved, determined by the rms value of the ac voltage. The time period of purely flexoelectric distortions was equal to 1/f. There was a well defined cut-off frequency above which these deformations vanished. In the case of dielectrically anisotropic and flexoelectric nematic, the flexoelectric contribution vanished above a critical frequency and the deformation of dielectric nature stabilized at high frequencies.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
66--70
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
- Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 90-924 Łódź, Poland
autor
- Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 90-924 Łódź, Poland
Bibliografia
- [1] L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials, Springer Verlag, New York, 1993.
- [2] J. C. Jones, E. L. Wood, G. P. Bryan-Brown, and V. C. Hui: Novel configuration of the zenithal bistable nematic liquid crystal device. SID 98 Digest, 858, 1998.
- [3] J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli: Giant flexoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97, 157802, 2006.
- [4] H. J. Deuling: Elasticity of nematic liquid crystals. in Liquid Crystals, Solid State Physics, Suppl. 14, pp. 103-107, edited by E. Liebert, Academic Press, New York, 1978.
- [5] A. I. Derzhanski and A. G. Petrov: Flexoelectricity in nematic liquid crystals. Acta Phys. Pol. A55, 747-767, 1979.
- [6] H. Gruler and L. Cheung: Dielectric alignment in an electrically conducting nematic liquid crystal. J. Appl. Phys. 46, 5097-5100, 1975.
- [7] M. Buczkowska and G. Derfel: Influence of ionic transport on deformations of homeotropic nematic layers with positive flexoelectric coefficients. Liq. Cryst. 32, 1285-1293, 2005.
- [8] M. Buczkowska and G. Derfel: Role of ions mobility in flexoelectric deformations of conducting homeotropic nematic layers. Sci. Bull. Tech. Univ. Łódź, Physics 29, 5-24, 2008.
- [9] M. Buczkowska, G. Derfel, M. Konowalski: Numerical investigation of influence of ionic space charge and flexoelectric polarization on measurement of elastic constans in nematic liquid crystals. Opto-Electron. Rev. 17, 95-98, 2009.
- [10] M. Buczkowska, G. Derfel: Analysis of deformations of flexoelectric homeotropic liquid crystal layers witch various anchoring strengths. Opto-Electron. Rev. 19, 48-52, 2011.
- [11] C. Gähwiller: The viscosity coefficients of a room-temperature liquid crystal (MBBA). Phys. Lett. A36, 311-312, 1971.
- [12] A. G. Petrov, A. Th. Ionescu, C. Versace, and N. Scaramuzza: Investigation of flexoelectric properties of a palladium-containing nematic liquid crystal, Azpac, and its mixtures with MBBA. Liq. Cryst. 19, 169-178, 1995.
- [13] A. Rapini and M. Papoular: Distorsion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois. J. Phys. Colloq. 30, C4-54-C4-56 (1969). (in French)
- [14] A. I. Derzhanski, A. G. Petrov, and M. D. Mitov: One-dimensional dielectric-flexoelectric deformations in nematic layers. J. Phys. 39, 273-285, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0020-0011