PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Embossable grating couplers for planar evanescent wave sensors

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents input grating couplers to be applied in planar evanescent wave sensors. Waveguide films SiO₂:TiO₂ were obtained using the sol-gel method, and grating couplers with a groove density of 1000 g/mm and 2400 g/mm were produced using the method of master grating embossing in sol film. The influence of refractive index of the cover on incoupling angles was presented. Basing on the experimental results, detection limits involving the changes of effective indexes and refractive indexes of the cover for the investigated planar structures were determined. Sensor structures with the couplers having a groove density of 1000 g/mm enable to detect minimum changes of the effective index below 3.3×10⁻⁷ and to detect minimum changes of refractive index of the cover below 2.3×10⁻⁶. Detection limits for the structures with couplers having the groove density of 2400 g/mm are over twofold higher.
Słowa kluczowe
Twórcy
  • Department of Optoelectronics, Silesian University of Technology, 2 Krzywoustego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Lukosz: Integrated optical chemical and direct biochemical sensors. Sensor. Actuator. B29, 37-50, 1995.
  • [2] K. Tiefenthaler and W. Lukosz: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B6, 209-220, 1989.
  • [3] P. M. Nellen and W. Lukosz: Integrated input grating coupler as chemo- and immunosensors. Sensor. Actuator. B1, 592-596, 1990.
  • [4] M. Błahut, R. Rogoziński, P. Karasiński, K. Gut, and A. Opilski: Model of planar refractometer based on two-port interferometer on glass. Opt. Appl. 24, 171-177, 1994.
  • [5] P. Hua, B. J. Juff, G. R. Quigley, J. S. Wilkinson, and K. Kawaguchi: Integrated optical dual Mach-Zehnder interferometer sensor. Sensor. Actuator. B87, 250-257, 2002.
  • [6] A. Brandenburg and R. Henninger: Integrated optical Young interferometer. Appl. Optics 33, 5941-5947, 1994.
  • [7] A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger: Fast, ultrasensitive virus detection using a Young interferometer sensor. Nano Lett. 7, 394-397, 2007.
  • [8] C. Stamm and W. Lukosz: Integrated optical difference interferometer as immunosensor. Sensor. Actuator. B31, 203-207, 1996.
  • [9] C. Stamm, R. Dangel, and W. Lukosz: Biosensing with the integrated-optical difference interferometer: dual-wavelength operation. Opt. Commun. 153, 347-359, 1998.
  • [10] T. Koster and P. V. Lambeck: Fully integrated optical polarimeter. Sensor. Actuator. B82, 213-226, 2002.
  • [11] K. Tiefenthaler and W. Lukosz: Integrated optical switches and gas sensors. Opt. Lett. 10, 137-139, 1984.
  • [12] K. Tiefenthaler and W. Lukosz: Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films 126, 205-211, 1985.
  • [13] R. E. Kunz: Gradient effective index waveguide sensors. Sensor. Actuator. B11, 167-176, 1993.
  • [14] R. E. Kunz and L. U. Kempen: Miniature integrated optical sensors. Proc. SPIE 2068, 69-85, 1994.
  • [15] M. Wiki, H. Gao, M. Juvet, and R. E. Kunz: Compact integrated optical sensor system. Biosens. Bioelectron. 16, 37-45, 2001.
  • [16] J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrö, S. M. De Paul, M. Textor, and N. D. Spencer: Optical grating coupler biosensors. Biomaterials 23, 3699-3710, 2003.
  • [17] R. Horváth, G. Fricsovszky, and E. Papp: Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition. Biosens. Bioelectron. 18, 415-428, 2003.
  • [18] http://www.microvacuum.com
  • [19] J. Homola, S. S. Yee, and G. Gauglitz: Surface plasmon resonance sensors: review. Sensor. Actuator. B54, 3-15, 1999.
  • [20] X. D. Hao, A. G. Kirk, and M. Tabrizan: Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 23, 151-160, 2007.
  • [21] C. J. Brinker and G. W. Scherer, Sol-gel Science, Academic Press, Inc. San Diego, 1990.
  • [22] K. Heuberger and W. Lukosz: Embossing technique for fabricating surface relief gratings on hard oxide waveguides. Appl. Optics 25, 1499-1504, 1986.
  • [23] J. Brazas and L. Li: Analysis of input-grating couplers having finite lengths. Appl. Optics 34, 3786-3792, 1995.
  • [24] P. Karasiński: Dielectric layers SiO2:TiO2 produced using the sol-gel technology for the application in planar sensors. Proc. SPIE 5576, 176-180, 2004.
  • [25] P. Karasiński: Sol-gel derived optical waveguide films for planar sensors with phase modulation. Opt. Appl. 34, 467-475, 2004.
  • [26] K. Wörhoff, P.V. Lambeck, and A. Driessen: Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices. J. Lightwave Technol. 17, 1401-1407, 1999.
  • [27] P. Karasiński, J. Jaglarz, and J. Mazur: Low loss silica-titania waveguide films. Photonics Letters of Poland 2, 2010.
  • [28] W. Lukosz and K. Tiefenthaler: Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Opt. Lett. 8, 537-539, 1983.
  • [29] I. Szendrö: Art and practice to emboss gratings into sol-gel waveguides. Proc. SPIE 4284, 80-87, 2001.
  • [30] P. Karasiński, J. Jaglarz, and J. Mazur: Characterization of low loss silica-titania waveguide films. (in preparation)
  • [31] P. Karasiński: Sensor properties of planar waveguide structures with grating couplers. Opto-Electron. Rev. 15, 168-178, 2007.
  • [32] R. Horváth, L. R. Lindvold, and N. B. Larsen: Revers-symmetry waveguides: theory and fabrication. Appl. Phys. B74, 383-393, 2002.
  • [33] G. Bönsch and P. Potulski: Measurement of the refractive index of air and comparision with modified Edlén's formulae. Metrologia 35, 133-139, 1998.
  • [34] R. B. S. Neto, J. P. R. F. de Mendonça, and B. Lesche: Determination of absolute values of refractive index of liquids using an interferometric method. Revista de Física Aplicada e Instrumentačăo 17, 74-79, 2004.
  • [35] W. A. Challener, J. D. Edwards, R. W. McGowen, J. Skorjanec, and Z. Yang: A multiplayer grating-based evanescent wave sensing technique. Sensor. Actuator. B71, 42-46, 2000.
  • [36] K. Cottier, M. Wiki, G. Viorin, H. Gao, and R. E. Kunz: Label-free sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips. Sensor. Actuator. B91, 241-251, 2003.
  • [37] S. Grego, J.R. McDaniel, and B.R. Stoner: Wavelength interrogation og grating-based optical biosensors in the coupler configuration. Sensor. Actuator. B131, 347-355, 2008.
  • [38] K. Schmitt, K. Oehse, G. Sulz, and C. Hoffman: Evanescent field sensors based on tantalum pentoxide waveguides-a review. Sensors 8, 711-738, 2008.
  • [39] R. Horváth and H. C. Pedersen: Demonstration of reverse symmetry waveguide sensing in aqueous solution. Appl. Phys. Lett. 81, 2166-2168, 2002.
  • [40] R. Horváth, H. C. Pedersen, N. Skivesen, C. Svanberg, and N.B. Larsen: Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating. J. Micromech. Microeng. 15, 1260-1264, 2005.
  • [41] A. Brandenburg, R. Polzius, F. Bier, U. Bliltewski, and E. Wagner: Direct observation of affinity of reactions by reflected-mode operation of integrated optical grating coupler. Sensor. Actuator. B30, 55-59, 1996.
  • [42] J. Dübendorfer and R. E. Kunz: Reference pads for miniature integrated optical sensors. Sensor. Actuator. B38/39, 116-121, 1997.
  • [43] M. Wiki and R. E. Kunz: Wavelength-interrogated optical sensor for biochemical applications. Opt. Lett. 25, 463-465, 2000.
  • [44] D. Clarc and W. Lukosz: Integrated optical output grating coupler as refractometer and (bio-)chemical sensor. Sensor. Actuator. B11, 461-465, 1993.
  • [45] D. Clarc and W. Lukosz: Direct immunosensing with an integrated-optical output grating coupler. Sensor. Actuator. B40, 53-58, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0020-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.