PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical uniform/gradient waveguide sensor structure-characterization

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the characterization of a composite uniform/gradient waveguide sensor structure. The results of theoretical analysis and experimental studies have been presented. The influence of sensor structure parameters on homogenous sensitivity and on surface sensitivity has been analyzed. Gradient layers for composite sensor structures were produced using the ion-exchange method, and the uniform layers, using the sol-gel method. In the experimental studies, involving the produced sensor structures, a prism coupler and a grating coupler were applied. Excellent agreement between the results of theoretical analysis and experimental studies has been achieved.
Twórcy
  • Department of Optoelectronics, Silesian University of Technology, 2 Krzywoustego Str., 44-100 Gliwice, Poland, pawel.karasinski@polsl.pl
Bibliografia
  • [1] G. Boisdé and A. Harmer, Chemical and Biochemical Sensing with Optical Fibres and Waveguides, Artech House, Boston-London, 1996.
  • [2] W. Lukosz: Integrated optical chemical and direct biochemical sensors. Sensor. Actuator B29, 37-50, 1995.
  • [3] K. Tiefenthaler and W. Lukosz: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B6, 209-220, 1989.
  • [4] O. Parriaux and G. J. Veldhuis: Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J. Lightwave Technol. 16, 573-582, 1998.
  • [5] M. Błahut, R. Rogoziński, P. Karasiński, K. Gut, and A. Opilski: Model of planar refractometer based on two-port interferometer in glass. Opt. Appl. 24, 171-177, 1994.
  • [6] R. G. Heideman and P. V. Lambeck: Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated mach-Zehnder interferometer system. Sensor. Actuator. B61, 100-127, 1997.
  • [7] P. Hua, B. J. Luff, G. R. Quigley, J. S. Wilkinson, and K. Kawaguchi: Integrated optical dual Mach-Zehnder interferometer sensor. Sensor. Actuator. B87, 250-257, 2002.
  • [8] A. Brandenburg: Differential refractometry by an integrated-optical Young interferometer. Sensor. Actuator. B38/39, 266-271, 1997.
  • [9] A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve: Development of a multichannel integrated interferometer immunosensor. Sensor. Actuator. B83, 1-7, 2002.
  • [10] W. Faubel, B. S. Seidel, and H. J. Ache: Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated optical micro-interferometer. Proc. SPIE 2508, 312-323, 1995.
  • [11] T. Koster and P. Lambeck: Fully integrated optical polarimeter. Sensor. Actuator. B82, 213-226, 2002.
  • [12] W. Lukosz, Ch. Stamm, H. R. Moser, R. Ryf, and J. Düben-dorfer: Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor. Sensor. Actuator. B38/39, 316-323, 1997.
  • [13] K. Heuberger and W. Lukosz: Embossing technique for fabricating surface relief gratings on hard oxide waveguides. Appl. Opt. 25, 1499-1504, 1986.
  • [14] K. Tiefenthaler and W. Lukosz: Integrated optical switches and gas sensors. Opt. Lett. 10, 137-139, 1984.
  • [15] Ph. M. Nellen and W. Lukosz: Integrated input grating coupler as chemo- and immunosensors. Sensor. Actuator. B1, 592-596, 1990.
  • [16] M. Wiki, H. Gao, M. Juvet, and R. E. Kunz: Compact integrated optical sensor system. Biosens. Bioelectron. 16, 37-45, 2001.
  • [17] R. E. Kunz, J. Dübendorfer, and R. H. Morf: Finite grating depth effects for integrated optical sensors with high sensitivity. Biosens. Bioelectron. 11, 653-667, 1996.
  • [18] I. Szendrö: Art and practice to emboss gratings into sol-gel waveguides. Proc. SPIE 4284, 80-87, 2001.
  • [19] J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrö, S. M De Paul, M. Textor, and N. D. Spencer: Optical grating coupler biosensors. Biomaterials 23, 3699-3710, 2003.
  • [20] http:/www.mikrovacuum.com
  • [21] P. Karasiński: Sensor properties of planar waveguide structures with grating couplers. Opto-Electron. Rev. 15, 168-178, 2007.
  • [22] P. Karasiński and R. Rogoziński: Characterization and sensor properties of sol gel SiO2:TiO2/ion exchange glass optical waveguides. Opt. Commun. 281, 2472-2480, 2008.
  • [23] K. Gut, P. Karasiński, W. T. Wójcik, R. Rogoziński, Z. Opilski, and A. Opilski: Applicability of interference TE0-TM0 modes and TE0-TE1 modes to the construction of waveguide sensors. Opt. Appl. 29, 101-109, 1999.
  • [24] Z. Qi, K. Itoh, M. Murabayashi, and H. Yanagi: A composite optical waveguides-based polarimetric interferometer for chemical and biochemical sensing applications. J. Lightwave Technol. 18, 1106-1110, 2000.
  • [25] Z. Qi, N. Matsuda, K. Itoh, and D. Qing: Characterization of an optical waveguide with a composite structure. J. Lightwave Technol. 20, 1598-1603, 2002.
  • [26] Z. Qi, I. Honma, and H. Zhou: Ordered-mesoporous-silica-thin-film-based chemical gas sensors with integrated optical polarimetric interferometry. Appl. Phys. Lett. 88, 053503-1, 2006.
  • [27] A. Yimit, A. G. Rossberg, T. Ameniya, and K. Itoh: Thin film composite optical waveguides for sensor applications: a review. Talanta 65, 1102-1109, 2005.
  • [28] P. Karasiński: Application of dielectric layers made in sol-gel technique in the technology of planar waveguide sensors. Proc. SPIE 4516, 15-20, 2001.
  • [29] D. W. Berreman: Optics in stratified and anisotropic media: 4×4 matrix formulation. J. Opt. Soc. Am. 62, 502-510, 1972.
  • [30] M. O. Vassell: Structure of optical guided modes in planar multilayers of optical anisotropic material. J. Opt. Soc. Am. 64, 166-173, 1974.
  • [31] P. Karasiński and R. Rogoziński: Influence of refractive profile shape on the distribution of modal attenuation in planar structures with absorption cover. Opt. Commun. 269, 76-88, 2007.
  • [32] P. Karasiński: Modal attenuation in metal-clad graded-index slab optical waveguides. Opt. Commun. 280, 351-358, 2007.
  • [33] R. V. Ramaswamy and R. Srivastava: Ion-exchanged glass waveguides: a review. J. Lightwave Technol. 6, 984-1002, 1988.
  • [34] S. I. Najafi, Introduction to Glass Integrated Optics, Artech House, Boston-London, 1992.
  • [35] A. Opilski, R. Rogoziński, M. Błahut, P. Karasiński, K. Gut, and Z. Opilski: Technology of ion exchange in glass and its application in waveguide planar sensors. Opt. Eng. 36, 1625-1638, 1997.
  • [36] R. Rogoziński: Electrodiffusion processes with the conversion of polarization direction of electric field in the formation of planar waveguide structures using ion exchange technique in glass. Opt. Appl. 28, 331-343, 1998.
  • [37] C. J. Brinker and G. W. Scherer, Sol-gel Science, Academic Press, Inc. San Diego, 1990.
  • [38] P. Karasiński: Sol-gel derived optical waveguide films for planar sensors with phase modulation. Opt. Appl. 34, 467-475, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0020-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.