PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature dependence of turn-on time delay of semiconductor laser diode : theoretical analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Temperature dependence of the turn-on time delay (ton) of uncooled semiconductor laser diodes biased below and above threshold is analyzed in presence of data pattern effect. We show that even when the laser is biased at or slightly above threshold, the increase in temperature of operation will lead to increase in the threshold carrier (Nth) and consequently the laser diode will be biased below the threshold again and a significant value of ton will be produced. Thus, knowledge about a value of dc-bias current required to achieve zero ton within wide range of temperature degrees is important when considering uncooled laser diode in high-speed optical communication systems. The temperature dependence of ton is calculated according to the temperature dependence of Nth and Auger recombination coefficient (C) and not by the well-know exponentional relationship of threshold current with temperature. The temperature dependence of Nth is calculated according to the temperature dependence of laser cavity parameters. Advanced analytical model is derived in term of carrier density, recombination coefficients and the injection current (Iinj). The validity of proposed model is confirmed by a numerical method. In addition, approximated models are included where under specified assumptions the proposed model reduces to the well-known approximate models of ton. According to our typical values and at a specified value of modulation current, the dc-bias one (Iib) should be increased from Iib = Ith to Iib ≈ 1.25 and 1.5Ith in order to achieve approximately zero ton when the temperature increases from 25°C to 55°C and 85°C, respectively.
Twórcy
autor
  • Department of Electrical, Electronic and Systems Engineering, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, mrhassan@vlsi.eng.ukm.my
Bibliografia
  • [1] J. A. P. Morgado and A. V. T. Cartaxo: Laser optimisation for dispersion supported transmission systems. IEE P-Opto-electron. 152, 49-56, 2005.
  • [2] D. S. Ellis and J. M. Xu: Electro-opto-thermal modelling of threshold current dependence on temperature. IEEE J. Sel. Top. Quant. 3, 640, 1997.
  • [3] X. X. Zhang, W. Panb, J. G. Chenc and H. Zhang: Theoretical calculation of turn-on delay time of VCSEL and effect of carriers recombination. Elsevier, Opt. Laser Technol. 39, 997-1001, 2007.
  • [4] G. P. Agrawal and N. K. Dutta: Long-wavelength Semiconductor Lasers. New York, Van Nostrand Reinhold, 1986.
  • [5] M. K. Liu: Principles and Applications of Optical Communication. The McGraw-Hill Companies, Inc, 1996.
  • [6] J. P. Morgado and A. T. Cartaxo: Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers. IEEE J. Sel. Top. Quant. 9, 1315-1324, 2003.
  • [7] J. Piprek, J. K. White and A. J. Spring Thorpe: What limits the maximum output power of Long.wavelength AlGaInAs/InP laser diodes? IEEE J. Quantum Elect. 38, 1253-1259, 2002.
  • [8] G. Adolfsson, S. Wang, M. Sadeghi, J. Bengtsson, A. Larsson, J. J. Lim, V. Vilokkinen and P. Melanen: Effects of lateral diffusion on temperature sensitivity of the threshold current for 1.3-μm double quantum-well GaInNAs-GaInNAs-GaAs lasers. IEEE J. Quantum Elect. 44, 607-618, 2008.
  • [9] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York, Wiley, 1995.
  • [10] D. M. Curter and K. Y. Lau: Ultrlow power optical interconnect with zero-biased, ultralow threshold laser - how low a threshold is low enough? IEEE Photonic Tech. Left. 7, 4-6, 1995.
  • [11] C. A. Stolz, D. Labukhin, N. Zakhleniuk and M. J. Adams: Locking bandwidth of optically injected Fabry-Perot semiconductor lasers for high injection strengths. IET Optoelectron. 2, 223-230, 2008.
  • [12] G. P. Agrawal: Fiber-Optic Communications Systems. John Wiley & Sons, Inc, 2002.
  • [13] G. P. Agrawal: Lightwave Technology Telecommunication Systems. John Wiley & Sons, Inc, (2005).
  • [14] Chi H. Lee: Microwave Photonics. Taylor & Francis Group, LLC, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.