PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrared diode laser spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v₃ + v₅ band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm⁻¹ spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v₁, v₅). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C₆H⁻, C₄H⁻, C₂H⁻, CN⁻) and their discovery in the interstellar space (C₆H⁻, C₄H⁻).
Twórcy
autor
autor
  • J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., 3 Dolejškova Str., 18-223 Prague 8, Czech Republic, civis@jh-inst.cas.cz
Bibliografia
  • [1] V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov and Y. P. Yakovlev: Calculation of the width of emission-line of long-wave GaInAsSb injection-lasers. Pisma Zh. Tekh. Fiz. 16, 66-70, 1990.
  • [2] J. Geabanacloche, Y. Q. Li, S. Z. Jin and M. Xiao: Electromagnetically induced transparency in ladder-type inhomogeneously broadened media - theory and experiment. Phys. Rev. A51, 576-584, 1995.
  • [3] K. B. Macadam, A. Steinbach and C. Wieman: A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 60, 1098-1111, 1992.
  • [4] C. E. Wieman and L. Hollberg: Using diode-lasers for atomic physics. Rev. Sci. Instrum. 62, 1-20, 1991.
  • [5] M. Xiao, Y. Q. Li, S. Z. Jin and J. Geabanacloche: Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666-669, 1995.
  • [6] S. Civiš, A. N. Imenkov, A. P. Danilova, N. M. Kolchanova, V. V. Sherstnev, Y. P. Yakovlev and A. D. Walters: Diode laser spectroscopy using two modes of an InAsSb/InAsSbP laser near 3.6 μm. Appl. Phys. B-Lasers O. 71, 481-485, 2000.
  • [7] S. Civiš, A. N. Imenkov, A. P. Danilova, N. M. Kolchanova, V. V. Sherstnev, Y. P. Yakovlev and A. D. Walters: A tunable single-mode 3.2-μm laser based on an InAsSb/InAsSbP double heterostructure with drive-current tuning range of 10 cm-1. Spectrochim. Acta A56, 2125-2130, 2000.
  • [8] A. Popov, V. Sherstnev, Y. Yakovlev, S. Civiš and Z. Zelinger: InAsSbP/InAs lasers (2.9 μm) for spectroscopy of ammonia: low temperature investigations. Spectrochim. Acta A54, 821-829, 1998.
  • [9] A. Popov, V. Sherstnev, Y. Yakovlev, R. Mucke, and P. Werle: Single-frequency InAsSb lasers emitting at 3.4 μm. Spectrochim. Acta A52, 863-870, 1996.
  • [10] B. Parvitte, C. Thiebeaux and D. Courtois: Tunable heterodyne spectrometer in the 9-μm range with selected lead-salt diodes. Spectrochim. Acta A55, 2027-2037, 1999.
  • [11] P. Werle: Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers. Appl. Phys. B-Lasers O. 60, 499-506, 1995.
  • [12] J. Xu, A. Lambrecht and M. Tacke: Lead chalcogenide implanted diode-lasers in cw operation above 77-K. Electron. Lett. 30, 571-573, 1994.
  • [13] Z. Zelinger, S. Civiš, P. Kubát and P. Engst: Diode-laser application for research of molecular-ions. Infrared Phys. Techn. 36, 537-543, 1995.
  • [14] J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A. L. Hutchinson and A. Y. Cho: Continuous-wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl. Phys. Lett. 67, 3057-3059, 1995.
  • [15] R. U. Martinelli, R. J. Menna, P. K. York, D. Z. Garbuzov, H. Lee, J. H. Abeles, N. Morris, J. C. Connolly, S. Y. Narayan, J. S. Vermaak, G. H. Olsen, D. E. Cooper, C. B. Carlisle, H. Riris and A. L. Cook: Tunable single-frequency III-V semiconductor diode lasers with wavelengths from 0.76 to 2.7 μm. Proc. SPIE 2834, 2-16, 1996.
  • [16] A. N. Baranov, A. N. Imenkov, V. V. Sherstnev and Y. P. Yakovlev: 2.7-3.9 μm InAsSb(P) InAsSbP Low-threshold diode-lasers. Appl. Phys. Lett. 64, 2480-2482, 1994.
  • [17] T. N. Danilova, O. I. Evseenko, A. N. Imenkov, N. M. Kolchanova, M. V. Stepanov, V. V. Sherstnev and Y. P. Yakovlev: Current-retunning of wave length of laser emission based on InAsSb/InAsSbP binary heterostructure. Pisma Zh. Tekh. Fiz. 22, 7-11, 1996.
  • [18] T. N. Danilova, O. I. Evseenko, A. N. Imenkov, N. M. Kolchanova, M. V. Stepanov, V. V. Sherstnev and Y. P. Yakovlev: Influence of pumping uniformity on current tuning of the emission wavelength of InAsSb/InAsSbP diode lasers. Tech. Phys. Lett. 24, 239-241, 1998.
  • [19] A. P. Danilova, A. N. Imenkov, N. M. Kolchanova, S. Civiš, V. V. Sherstnev and Y. P. Yakovlev: Single-mode InAsSb/InAsSbP laser (lambda approximate to 3.2 μm) tunable over 100 angstrom. Semiconductors 34, 237-242, 2000.
  • [20] A. P. Danilova, A. N. Imenkov, N. M. Kolchanova, V. V. Sherstnev, Y. P. Yakovlev and S. Civiš: Two-mode diode-laser spectroscopy with a InAsSb/InAsSbP laser near 3.6 μm. Semiconductors 33, 1322-1327, 1999.
  • [21] A. P. Danilova, T. N. Danilova, A. N. Imenkov, N. M. Kolchanova, M. V. Stepanov, V. V. Sherstnev and Y. P. Yakovlev: Short-wavelength current tuning of InAsSb/InAsSbP heterostructure lasers caused by an injection nonuniformity. Semiconductors 33, 991-995, 1999.
  • [22] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen and G. Ebbinghaus: Electrically pumped 10 Gbit/s MOVPE-grown monolithic 1.3 μm VCSEL with GaInNAs active region. Electron. Lett 38, 322-324, 2002.
  • [23] A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu and E. Kapon: Cavity mode-gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 degrees C. IEEE Photonic. Tech. L. 19, 121-123, 2007.
  • [24] N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. J. Li, R. Bhat and C. E. Zah: Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD. IEEE J. Sel. Top. Quant. 11, 990-998, 2005.
  • [25] C. Lauer, M. Ortsiefer, R. Shau, J. Rosskopf, G. Bohm, R. Meyer and M. C. Amann: InP-based long-wavelength vertical-cavity surface-emitting lasers with buried tunnel junction. Phys. Status Solidi C1, 2183-2209, 2004.
  • [26] J. Cihelka, I. Matulková and S. Civiš: Laser diode photo-acoustic and FTIR laser spectroscopy of formaldehyde in the 2.3 μm and 3.5 μm spectral range. J. Mol. Spectrosc. 256, 68-74, 2009.
  • [27] S. Civiš, V. Horká, J. Cihelka, T. Šimeček, E. Hulicius, J. Oswald, J. Pangrác, A. Vicet, Y. Rouillard, A. Salhi, C. Alibert, R. Werner and J. Koeth: Room-temperature diode laser photoacoustic spectroscopy near 2.3 μm. Appl. Phys. B-Lasers O. 81, 857-861, 2005.
  • [28] S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petřček, Y. Rouillard, C. Alibert and R. Werner: GaSb based lasers operating near 2.3 μm for high resolution absorption spectroscopy. Spectrochim. Acta A61, 3066-3069, 2005.
  • [29] S. Civiš, P. Kubát, Z. Zelinger, V. Horká, A. N. Imenkov, N. M. Kolchanova and Y. P. Yakovlev: InAsSb/InAsSbP current-tunable laser with narrow spectral line width. Appl. Phys. B-Lasers O. 76, 633-637, 2003.
  • [30] V. Horká, S. Civiš, L. H. Xu and R. M. Lees: Laser diode photoacoustic detection in the infrared and near infrared spectral ranges. Analyst 130, 1148-1154, 2005.
  • [31] A. N. Imenkov, N. M. Kolchanova, P. Kubát, S. Civiš and Y. P. Yakovlev: Emission-line broadening of current tunable InAsSbP/InAsSb/InAsSbP heterostructure lasers. Semiconductors 34, 1406-1409, 2000.
  • [32] A. N. Imenkov, N. M. Kolchanova, P. Kubát, K. D. Moiseev, S. Civiš and Y. P. Yakovlev: Current-tunable lasers with a narrow emission line operating at 3.3 μm. Semiconductors 35, 360-364, 2001.
  • [33] A. N. Imenkov, N. M. Kolchanova, P. Kubát, S. Tsivish and Y. P. Yakovlev: Spectral line width of the current-tunable lasers on the base of InAsSb/InAsSbP at low temperature. Semiconductors 36, 592-598, 2002.
  • [34] A. N. Imenkov, N. M. Kolchanova, Y. P. Yakovlev, P. Kubát and S. Civiš: The spectral linewidth of tunable semiconductor InAsSb/InAsSbP lasers emitting at 3.2-3.6 μm (2800-3100 cm-1). Rev. Sci. Instrum. 72, 1988-1992, 2001.
  • [35] P. Kania and S. Civiš: Application of InAsSb/InAsSbP and lead chalcogenide infrared diode lasers for photoacoustic detection in the 3.2 and 5 μm region. Spectrochim. Acta A59, 3063-3074, 2003.
  • [36] I. Matulková, J. Cihelka, J. Vyskočil, T. Šimeček and S. Civiš: Diagnostic and characterization of the VCSEL diode based on GaSb. Appl. Phys. B-Lasers O. 99, 333-338, 2010.
  • [37] T. N. Danilova, A. P. Danilova, O. G. Ershov, A. H. Imenkov, N. M. Kolchanova, M. V. Stepanov, V. V. Sherstnev and Y. P. Yakovlev: InAsSb/InAsSbP diode lasers with separate electrical and optical confinement, emitting at 3-4 μm. Semiconductors 31, 831-834, 1997.
  • [38] A. Salhi, Y. Rouillard, A. Perona, P. Grech, M. Garcia and C. Sirtori: Low-threshold GaInAsSb/AlGaAsSb quantum well laser diodes emitting near 2.3 μm. Semicond. Sci. Tech. 19, 260-262, 2004.
  • [39] A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard and A. N. Baranov: Trace gas detection with antimonide-based quantum-well diode lasers. Spectrochim. Acta A58, 2405-2412, 2002.
  • [40] A. Bachmann, K. Kashani-Shirazi, S. Arafin and M. C. Amann: GaSb-Based VCSEL with buried tunnel junction for emission around 2.3 μm. IEEE J. Sel. Top. Quant. 15, 933-940, 2009.
  • [41] C. H. Henry: Theory of the linewidth of semiconductor-lasers. IEEE J. Quantum Elect. 18, 259-264, 1982.
  • [42] M. Yamada: Variation of intensity noise and frequency noise with the spontaneous emission factor in semiconductor-lasers. IEEE J. Quantum Elect. 30, 1511-1519, 1994.
  • [43] S. Viciani, M. Gabrysch, F. Marin, F. M. di Sopra, M. Moser and K. H. Gulden: Lineshape of a vertical cavity surface emitting laser. Opt. Commun. 206, 89-97, 2002.
  • [44] P. Debernardi, L. Fratta and G. P. Bava: Spectral linewidth in oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Elect. 37, 1084-1094, 2001.
  • [45] P. Signoret, G. Belleville and B. Orsal: Experimental investigation of the 1/f amplitude noise of vertical-cavity surface-emitting lasers. Fluct. Noise Lett. 1, L1-L5, 2001.
  • [46] F. Marin and G. Giacomelli: Polarization and transverse mode dynamics of VCSELs. J. Opt. B-Quantum S. O. 1, 128-132, 1999.
  • [47] S. Civiš, D. Babánková, J. Cihelka, P. Sazama and L. Juha: Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide. J. Phys. Chem. A112, 7162-7169, 2008.
  • [48] C. Lauer and M. C. Amann: Calculation of the linewidth broadening in vertical-cavity surface-emitting lasers due to temperature fluctuations. Appl. Phys. Lett. 86, L 1-3, 2005.
  • [49] A. Andersson-Fäldt, M. Ghisoni, A. Jacobsson, A. Larsson, S. Lundqvist, A. Olme, L. R. Pendrill, C. Sandberg, F. Sjostrom, R. Tell, C. Tullin and T. Wahnstrom: Molecular spectroscopy using vertical cavity surface emitting diode lasers. Proc. SPIE. 3821, 105-114, 1999.
  • [50] S. Viciani and F. Marin: Frequency noise and lineshape of VCSELs. Proc. SPIE. 4286, 109-118, 2001.
  • [51] A. G. Bell: On the production and reproduction of sound by light: the photophone. Am. J. Sci. 20, 305-324, 1880.
  • [52] M. A. Gondal, I. A. Bakhtiari and S. M. A. Durrani: Spectroscopy of trace gases using a pulsed optoacoustic technique. J. Anal. Atom. Spectrom. 13, 455-458, 1998.
  • [53] A. Veres, Z. Bozoki, A. Mohacsi, M. Szakall and G. Szabo: External cavity diode laser based photoacoustic detection of CO2 at 1.43 μm: The effect of molecular relaxation. Appl. Spectrosc. 57, 900-905, 2003.
  • [54] T. H. Vansteenkiste, F. R. Faxvog and D. M. Roessler: Photoacoustic measurement of carbon-monoxide using a semiconductor diode-laser. Appl. Spectrosc. 35, 194-196, 1981.
  • [55] V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov and Y. N. Ponomarev: Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor. Infrared Phys. Techn. 44, 253-261, 2003.
  • [56] S. Bernegger, P. L. Meyer and M. W. Sigrist: Photoacoustic detection of gaseous air-pollutants with a CO laser. Helv. Phys. Acta 58, 829-832, 1985.
  • [57] V. Slezak, G. Santiago and A. L. Peuriot: Photoacoustic detection of NO2 traces with CW and pulsed green lasers. Opt. Lasers Eng. 40, 33-41, 2003.
  • [58] F. J. M. Harren, R. Berkelmans, K. Kuiper, S. T. Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander and D. H. Parker: On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin. Appl. Phys. Lett. 74, 1761-1763, 1999.
  • [59] F. J. M. Harren, J. Reuss and F. Lenz: Photoacoustic detection of current ethylene evolution in citrus flowers by modern laser techniques. Gartenbauwissenschaft 62, 193-196, 1997.
  • [60] L. B. Kreuzer: Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934, 1971.
  • [61] P. L. Meyer and M. W. Sigrist: Atmospheric-pollution monitoring using CO2-laser photoacoustic-spectroscopy and other techniques. Rev. Sci. Instrum. 61, 1779-1807, 1990.
  • [62] R. Grisar, H. Preier, G. Schmidte, G. Restelli and D. Seidel, Monitoring Gaseous Pollutants by Tunable Diode Lasers, Kluwer, Dordrecht, 1987.
  • [63] R. Grisar, H. Preier, G. Schmidte, G. Restelli and D. Seidel, Monitoring Gaseous Pollutants by Tunable Diode Lasers, Kluwer, Dordrecht, 1989.
  • [64] R. Grisar, H. Preier, G. Schmidte, G. Restelli and D. Seidel, Monitoring Gaseous Pollutants by Tunable Diode Lasers, Kluwer, Dordrecht, 1992.
  • [65] A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert and A. N. Baranov: Tunability of antimonide-based semi-conductor lasers diodes and experimental evaluation of the thermal resistance. IEEE P-Optoelectron. 150, 310-313, 2003.
  • [66] L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele and J. Vander Auwera: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Ra. 110, 533-572, 2009.
  • [67] F. C. Vandenheuvel and A. Dymanus: Observation of far-infrared transitions of HCO+, CO+ and HN2+. Chem. Phys. Lett. 92, 219-222, 1982.
  • [68] H. C. Sun, E. A. Whittaker, Y. W. Bae, C. K. Ng, V. Patel, W. H. Tam, S. McGuire, B. Singh and B. Gallois: Combined wavelength and frequency-modulation spectroscopy - a novel diagnostic-tool for materials processing. Appl. Opt. 32, 885-893, 1993.
  • [69] C. S. Gudeman, M. H. Begemann, J. Pfaff and R. J. Saykally: Velocity-modulated infrared-laser spectroscopy of molecular-ions - the v1 band of HCO+ Phys. Rev. Lett. 50, 727-731, 1983.
  • [70] S. Civiš: Infrared diode-laser study of ArH+ and ArD+ ions in the positive-column of an AC glow-discharge. Chem. Phys. 186, 63-76, 1994.
  • [71] S. Civiš, C. E. Blom and P. Jensen: Diode-laser Infrared-spectra and potential-energy curve for SH+. J. Mol. Spectrosc. 138, 69-78, 1989.
  • [72] A. Dalgarno and R. A. McCray: Formation of interstellar molecules from negative-ions. Astrophys. J. 181, 95-100, 1973.
  • [73] C. Civiš and T. Šedivcová: Detekce záporných iontů v mezihvězdném prostoru. Čs. Čas. Fyz. 52, 152-159, 2002. (in Czech)
  • [74] E. Hirota: Microwave and infrared-spectra of free-radicals and molecular-ions. Chem. Rev. 92, 141-173, 1992.
  • [75] S. Civiš, A. Walters, M. Y. Tretyakov, S. Bailleux and M. Bogey: Submillimeter-wave spectral lines of negative ions (SH- and SD-) identified by their Doppler shift. J. Chem. Phys. 108, 8369-8373, 1998.
  • [76] M. Elhanine, R. Farrenq, G. Guelachvili and M. Morillonchapey: Negative-ion SH- - the vibration-rotation bands between 2200 and 2750 cm-1 by Fourier-transform spectroscopy. J. Mol. Spectrosc. 129, 240-242, 1988.
  • [77] Z. Zelinger, A. Bersch, M. Petri, W. Urban and S. Civiš: Velocity modulation diode-laser spectroscopy of deuterium sulfide (SD-). J. Mol. Spectrosc. 171, 579-582, 1995.
  • [78] S. Brunken, C. A. Gottlieb, H. Gupta, M. C. McCarthy and P. Thaddeus: Laboratory detection of the negative molecular ion CCH. Astron. Astrophys. 464, L33-L36, 2007.
  • [79] H. Gupta, S. Brunken, F. Tamassia, C. A. Gottlieb, M. C. Mc-Carthy and P. Thaddeus: Rotational spectra of the carbon chain negative ions C4H- and C8H. Astrophys. J. 655, L57-L60, 2007.
  • [80] M. C. McCarthy, C. A. Gottlieb, H. Gupta and P. Thaddeus: Laboratory and astronomical identification of the negative molecular ion C6H. Astrophys. J. 652, L141-L144, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.