PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Laser induced forward transfer of conducting polymers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report on laser printing of conducting polymers directly from the solid phase. Laser induced forward transfer is employed to deposit P3HT:PCBM films on glass/ITO/PEDOT:PSS substrates. P3HT:PCBM is widely used as the active material in organic solar cells. Polyaniline films, which are also printed by laser induced forward transfer, find many applications in the field of biotechnology. Laser printing parameters are optimized and results are presented. To apply solid-phase laser printing, P3HT:PCBM films are spun cast on quartz substrates, while aniline is in-situ polymerized on quartz substrates.
Słowa kluczowe
Twórcy
autor
autor
  • Physics Department, National Technical University of Athens, 9 Heroon Polytechniou Str., Zografou 15780, Athens, Greece
Bibliografia
  • [1] U. Lange, N. V. Roznyatovskaya and V. M. Mirsky: Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614, 1-26, 2008.
  • [2] J. C. Vidal, E. Garcia-Ruiz and J. R. Castillo: Recent advances in electropolymerized conducting polymers in amperometric biosensors. Microchim. Acta 143, 93-111, 2003.
  • [3] S. R. Forrest and M. E. Thompson: Introduction: Organic electronics and optoelectronics. Chem. Rev. 107, 923-925, 2007.
  • [4] B. C. Thomson and J. M. J. Frechet: Polymer-fullerene composite solar cells. Angew. Chem. Int. Edit. 47, 58-77, 2008.
  • [5] F. Li, M. A. Winnik, A. Matvienko and A. Mandelis: Polypyrrole nanoparticles as a thermal transducer of NIR radiation in hot-melt adhesives. J. Mater. Chem. 17, 4309-4315, 2007.
  • [6] G. Nystrom, A. Razaq, M. Stromme, L. Nyholm and A. Mihranyan: Ultrafast all-polymer paper-based batteries. Nano Lett. 9, 3635-3639, 2009.
  • [7] M. Saurin and S. P. Armes: Study of the chemical polymerization of pyrrole onto printed circuit boards for electroplating applications. J. Appl. Polym. Sci. 56, 41-50, 1995.
  • [8] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds: Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481-494, 2000.
  • [9] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe and J. Poortmans: Polymer based organic solar cells using ink-jet printed active layers. Appl. Phys. Lett. 92, 033306, 2008.
  • [10] S. E. Shaheen, R. Radspinner, N. Peyghambarian and G. E. Jabbour: Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79, 2996-2998, 2001.
  • [11] D. Vak, S. S. Kim, J. Jo, S. H. Oh, S. I. Na, J. Kim and D. Y. Kim: Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl. Phys. Lett. 91, 081102, 2007.
  • [12] R. M. Swanson: Photovoltaics power up. Science 324, 891-892, 2009.
  • [13] S. A. Backer, K. Sivula, D. F. Kavulak and J. M. J. Frechet: High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem. Mater. 19, 2927-2929, 2007.
  • [14] E. Ahlswede, W. Mühleisen, M. W. M. Wahi, J. Hanisch and M. Powalla: Highly efficient organic solar cells with printable low-cost transparent contacts. Appl. Phys. Lett. 92, 143307, 2008.
  • [15] C. Deibel, A. Baumann and V. Dyakonov: Polaron recombination in pristine and annealed bulk heterojunction solar cells. Appl. Phys. Lett. 93, 163303, 2008.
  • [16] X. Chen, C. Zhao, L. Rothberg and M. K. Ng: Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Appl. Phys. Lett. 93, 123302, 2008.
  • [17] E. Kymakis, N. Kornilios and E. Koudoumas: Carbon nanotube doping of P3HT:PCBM photovoltaic devices. J. Phys. D Appl. Phys. 41, 165110, 2008.
  • [18] V. D. Mihailetchi, H. Xie, B. Boer, L. J. A. Koster and P. W. M. Blom: Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 16, 699-708, 2006.
  • [19] F. C. Chen, Y. K. Lin and C. J. Ko: Submicron-scale manipulation of phase separation in organic solar cells. Appl. Phys. Lett. 92, 023307, 2008.
  • [20] C. W. Chu, H. Yang, W. J. Hou, J. Huang, G. Li and Y. Yang: Control of the nanoscale crystallinity and phase separation in polymer solar cells. Appl. Phys. Lett. 92, 103306, 2008.
  • [21] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger: New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572-576, 2006.
  • [22] M. O. Reese, M. S. White, G. Rumbles, D. S. Ginley and S. E. Shaheen: Optimal negative electrodes for poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices. Appl. Phys. Lett. 92, 053307, 2008.
  • [23] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617-1622, 2005.
  • [24] K. Kim, J. Liu, M. A. G. Namboothiry and D. L. Carroll: Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90, 163511, 2007.
  • [25] C. J. Ko, Y. K. Lin, F. C. Chen and C. W. Chu: Modified buffer layers for polymer photovoltaic devices. Appl. Phys. Lett. 90, 063509, 2007.
  • [26] M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran and D. L. Carroll: Meso-structure formation for enhanced organic photovoltaic cells. Org. Lett. 7, 5749-5752, 2005.
  • [27] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827-829, 1997.
  • [28] C. N. Hoth, P. Schilinsky, S. A. Choulis and C. J. Brabec: Printing highly efficient organic solar cells. Nano Lett. 8, 2806-2813, 2008.
  • [29] R. Green, A. Morfa, A. J. Ferguson, N. Kopidakis, G. Rumbles and S. E. Shaheen: Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Appl. Phys. Lett. 92, 033301, 2008.
  • [30] F. C. Chen, H. C. Tseng and C. J. Ko: Solvent mixtures for improving device efficiency of polymer photovoltaic devices. Appl. Phys. Lett. 92, 103316, 2008.
  • [31] G. Li, V. Shrotriya, J. Huangi, Y. Yao, T. Moriarty, K. Emery and Y. Yang: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864-868, 2005.
  • [32] D. Gupta, M. Bag and K. S. Narayan: Area dependent efficiency of organic solar cells. Appl. Phys. Lett. 93, 163301, 2008.
  • [33] J. B. Emah, R. J. Curry and S. R. P. Silva: Low cost patterning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency. Appl. Phys. Lett. 93, 103301, 2008.
  • [34] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec: Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 15, 1193-1196, 2005.
  • [35] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels and R. A. J. Janssen: Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579-583, 2005.
  • [36] F. Padinger, R. S. Rittberger and N. S. Sariciftci: Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85-88, 2003.
  • [37] O. Yoshikawa, T. Sonobe, T. Sagawa and S. Yoshikawa: Single mode microwave irradiation to improve the efficiency of polymer solar cell based on poly(3-hexylthiophene) and fullerene derivative. Appl. Phys. Lett. 94, 083301, 2009.
  • [38] V. Shrotriya: Polymer power. Nat. Photonics 3, 447-449, 2009.
  • [39] J. Bohandy, B. F. Kim and F. J. Adrian: Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538-1539, 1986.
  • [40] G. B. Blanchet, C. R. Fincher and I. Malajovich: Laser evaporation and the production of pentacene films. J. Appl. Phys. 94, 6181-6184, 2003.
  • [41] R. Fardel, M. Nagel, F. Nüesch, T. Lippert and A. Wokaun: Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Appl. Phys. Lett. 91, 061103, 2007.
  • [42] S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos and H. K. Park: Nanomaterial enabled laser transfer for organic light emitting material direct writing. Appl. Phys. Lett. 93, 151110, 2008.
  • [43] M. A. Rahman, P. Kumar, D. S. Park and Y. B. Shim: Electrochemical sensors based on organic conjugated polymers. Sensors 8, 118-141, 2008.
  • [44] N. M. Kocherginsky, W. Lei and Z. Wang: Redox reactions without direct contact of the reactants. Electron and ion coupled transport through polyaniline membrane. J. Phys. Chem. A109, 4010-4016, 2005.
  • [45] Z. F. Li and E. Ruckenstein: Improved surface properties of polyaniline films by blending with Pluronic polymers without the modification of the other characteristics. J. Colloid Interf. Sci. 264, 362-369, 2003.
  • [46] N. B. Clark and L. J. Maher: Non-contact, radio frequency detection of ammonia with a printed polyaniline sensor. React. Funct. Polym. 69, 594-600, 2009.
  • [47] S. Mu, C. Chen and J. Wang: The kinetic behavior for the electrochemical polymerization of aniline in aqueous solution. Synthetic Met. 88, 249-254, 1997.
  • [48] A. C. Barton, S. D. Collyer, F. Davis, G. Z. Garifallou, G. Tsekenis, E. Tully, R. O'Kennedy, T. Gibson, P. A. Millner and S. P. J. Higson: Labeless AC impedimetric antibody-based sensors with pg ml-1 sensitivities for point-of-care biomedical applications. Biosens. Bioelectron. 24, 1090-1095, 2009.
  • [49] A. Ramanavicius, A. Ramanaviciene and A. Malinauskas: Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim. Acta 51, 6025-6037, 2006.
  • [50] J. Jang, J. Ha and J. Cho: Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 19, 1772-1775, 2007.
  • [51] J. Stejskal, I. Sapurina, J. Prokes and J. Zemek: In-situ polymerized polyaniline films. Synthetic Met. 105, 195-202, 1999.
  • [52] D. P. Banks, C. Grivas, I. Zergioti and R. W. Eason: Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor. Opt. Express 16, 3249-3254, 2008.
  • [53] H. Esrom, J. Y. Zhang, U. Kogelschatz and A. J. Pedraza: New approach of a laser-induced forward transfer for deposition of patterned thin metal films. Appl. Surf. Sci. 86, 202-207, 1995.
  • [54] I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos and C. Fotakis: Microdeposition of metal and oxide structures using ultrashort laser pulses. Appl. Phys. A66, 579-582, 1998.
  • [55] D. Toet, P. M. Smith, T. W. Sigmon and M. O. Thompson: Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure. J. Appl. Phys. 87, 3537-3546, 2000.
  • [56] B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret and P. Collot: Experimental investigations of laser-induced forward transfer process of organic thin films. Appl. Surf. Sci. 254, 1206-1210, 2007.
  • [57] N. T. Kattamis, N. D. McDaniel, S. Bernhard and C. B. Arnold: Laser direct write printing of sensitive and robust light emitting organic molecules. Appl. Phys. Lett. 94, 103306, 2009.
  • [58] I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki and D. Kafetzopoulos: Femtosecond laser microprinting of biomaterials. Appl. Phys. Lett. 86, 163902, 2005.
  • [59] P. Serra, J. M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez and J. L. Morenza: Laser-induced forward transfer: a direct-writing technique for biosensors preparation. JLMN 1, 236-242, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.