PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uncooled MWIR and LWIR photodetectors in Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
IR and THz Electronics : from Materials to Devices of E-MRS 2009 ; (15-18.09.2009 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The history, status, and recent progress in the middle and long wavelength Hg1-xCdxTe infrared detectors operating at near room temperatures are reviewed. Thermal generation of charge carriers in narrow gap semiconductor is a major limitation or sensitivity. Cooling is a straightforward way to suppress thermal generation of charge carriers and reduce related noise. However, at the same time, cooling requirements make infrared systems bulky, heavy, and inconvenient in use. A number of concepts to improve performance of photodetectors operating at near room temperatures have been proposed and implemented. Recent considerations of the fundamental detector mechanisms suggest that near perfect detection can be achieved without the need for cryogenic cooling. This paper, to a large degree, is based on the research, development, and commercialization of uncooled HgCdTe detectors in Poland. The devices have been based on 3D-variable band gap and doping level structures that integrate optical, detection and electric functions in a monolithic chip. The device architecture is optimized for the best compromise between requirements of high quantum efficiency, efficient and fast collection of photogenerated charge carriers, minimized thermal generation, reduced parasitic impedances, wide linear range, wide acceptance angles and other device features. Recent refinements in the devices design and technology have lead to sensitivities close to the background radiation noise limit, extension of useful spectral range to > 16 µm wavelength and picosecond range response times. The devices have found numerous applications in various optoelectronic systems. Among them there are fast scan FTIR spectrometers developed under MEMFIS project.
Twórcy
  • VIGO System S.A., 129/133 Poznańska Str., 05-850 Ożarów Maz., Poland
autor
  • VIGO System S.A., 129/133 Poznańska Str., 05-850 Ożarów Maz., Poland
  • VIGO System S.A., 129/133 Poznańska Str., 05-850 Ożarów Maz., Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • VIGO System S.A., 129/133 Poznańska Str., 05-850 Ożarów Maz., Poland
autor
  • VIGO System S.A., 129/133 Poznańska Str., 05-850 Ożarów Maz., Poland
Bibliografia
  • [1] W. D. Lawson, S. Nielsen, E. H. Putley and A. S. Young: Preparation and properties of HgTe-CdTe. J. Phys. Chem. Solids 9, 325-329, 1959.
  • [2] R. R. Galazka and W. Giriat: Electrical properties of the CdTe-HgTe system. Bull. Acad. Polon. Sci. 9, 281, 1961.
  • [3] R. Gałązka: Preparation, doping and electrical properties of Hg0.9Cd0.1Te. Acta Phys. Polon. 24, 791-800, 1963.
  • [4] W. Giriat, Z. Dziuba, R. R. Galazka, L. Sosnowski and T. Zakrzewski: Electrical properties of the semiconducting system CdxHg1-x Te. Proc. 7 th ICPS, Dunod Editeur, Paris, 251, 1964.
  • [5] W. Giriat and M. Grynberg: Photoelectromagnetic infrared detector. Przegląd Elektroniki 4, 216-221, 1963. (in Polish)
  • [6] J. Piotrowski and A. Rogalski: Semiconductor Infrared Detectors. WNT Warsaw, 1984. (in Polish)
  • [7] G. Cohen-Solal and Y. Marfaing: Transport of photocarriers in CdxHg1-xTe graded.gap structures. Solid. State Electron. 11, 1131-1147, 1968.
  • [8] J. Piotrowski: A new method of obtaining CdxHg1-xTe thin films. Electr. Technol. 5, 87-89, 1972.
  • [9] J. Piotrowski: Electrical and photoelectric properties of Hg1-xCdxTe films. Msc Dissertation, MUT, Warsaw, 1973. (in Polish)
  • [10] E. Igras, R. Jeżykowski, T. Persak, J. Piotrowski and Z. Nowak: Epitaxial CdxHg1-xTe layers as infrared detectors. Proc. 6 th Int. Symp. on Photon Detectors, Siofok, Hungary, 221-236, 1974.
  • [11] J. Piotrowski, W. Galus and M. Grudzień: Near room-temperature IR photo.detectors. Infrared Phys. 31, 1-48, 1991.
  • [12] Z. Nowak, J. Piotrowski and J. Rutkowski: Growth of HgZnTe by cast-recrystallization. J. Cryst. Growth 89, 237-241, 1988.
  • [13] K. Adamiec, A. Maciak, Z. Nowak and J. Piotrowski: ZnHgTe as a material for ambient temperature 10.6 micrometer photodetectors. Appl. Phys. Lett. 54, 143-144, 1989.
  • [14] J. Piotrowski, K. Adamiec and A. Maciak: High-temperature 10.6.μm HgZnTe photodetectors. Infrared Phys. 29, 267-270, 1989.
  • [15] P. Brogowski, H. Mucha and J Piotrowski: Modification of mercury cadmium telluride, mercury manganese tellurium, and mercury zinc telluride by ion etching. Phys. Stat. Sol., 114(a), K37, 1989.
  • [16] P. Brogowski and J. Piotrowski: The p-to-n conversion of HgCdTe, HgZnTe and HgMnTe by anodic oxidation and subsequent heat treatment. Semicond. Sci. 5, 530-532, 1990.
  • [17] E. Igras and J. Piotrowski: A new (Cd,Hg)Te photodiode type with protected junction surface. Opt. Appl. 6, 99-106, 1976.
  • [18] A. Rogalski, J. Piotrowski and J. Gronkowski: A modified hot wall epitaxy technique for the growth of CdTe and Hg1-xCdxTe epitaxial layers. Thin Solid Films 191, 239-245, 1990.
  • [19] L. Kubiak, P. Madejczyk, J. Wenus, W. Gawron, K. Jóźwikowski, J. Rutkowski and A. Rogalski: Status of HgCdTe photodiodes at the Military University of Technology. Opto-Electron. Rev. 11, 211-226, 2003.
  • [20] A. Rogalski and J. Piotrowski: Intrinsic infrared photodetectors. Prog. Quant. Electron. 12, 87-289, 1988. Pergamon Press.
  • [21] J. Piotrowski, A. Jóźwikowska, K. Jóźwikowski and R. Ciupa: Numerical analysis of longwavelength extracted photodiodes. Infrared Phys. 34, 565-572, 1993.
  • [22] Infrared Photon Detectors, edited by A. Rogalski, SPIE Optical Engineering Press, Bellingham, Washington USA, 1995.
  • [23] A. Rogalski: Infrared Detectors. Gordon and Breach Science Publishers, Amsterdam, 2000.
  • [24] A. Rogalski, K. Adamiec and J. Rutkowski: Narrow-gap Semiconductor Photodiodes. SPIE Press, Bellingham, 2000.
  • [25] A. Rogalski: Hg-based alternatives to MCT. chapter in Infrared Detectors and Emitters: Materials and Devices, pp. 377-400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001.
  • [26] A. Rogalski: Infrared detectors: status and trends. Prog. Quant. Electron. 27, 59-210, 2003.
  • [27] A. Rogalski: Photon detectors. Chapter in Encyclopedia of Optical Engineering, pp. 1985-2035, edited by R. Driggers, Marcel Dekker, Inc., New York, 2003.
  • [28] A. Rogalski: Infrared Detectors: Developments. SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Washington USA, 2004.
  • [29] A. Rogalski: HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267-2336, 2005.
  • [30] P. Becla, E. Dudziak and J. M. Pawlikowski: Spectral sensivity of the photovoltaic effect in CdxHg1-xTe p-n junctions. Opt. Appl. 4, 3-5, 1974.
  • [31] J. M. Pawlikowski and P. Becla: Some properties of photovoltaic Hg1-xCdxTe detectors for infrared radiation. Infrared Phys. 15, 331-337, 1975.
  • [32] P. Becla and J. M. Pawlikowski: Epitaxial Hg1-xCdxTe photovoltaic detectors. Infrared Phys. 16, 457-464, 1975.
  • [33] J. M. Pawlikowski: Photoconductivity of graded-gap Hg1-xCdxTe. Infrared Phys. 19, 179-184, 1978.
  • [34] J. M. Pawlikowski: Application of epitaxial graded-gap semiconductor layers broad range photodetectors. Thin Solid Film 50, 269-272, 1978.
  • [35] P. Becla and E. Placzek-Popko: Electrical properties of infrared photovoltaic Hg1-xCdxTe detectors. Infrared Phys. 21, 323-332, 1981.
  • [36] M. Nowak: The photomagnetoelectric effect and photoconductivity for non-normal incidence of radiation. Phys. Stat. Sol. (a) 80, 691-701, 1983.
  • [37] M. Grudzień and J. Piotrowski: Monolithic optically immersed HgCdTe IR detectors. Infrared Phys. 29, 251-253, 1989.
  • [38] J. Piotrowski, W. Galus and M. Grudzień: Near room-temperature IR photo.detectors. Infrared Phys. 31, 1-48, 1991.
  • [39] J. Piotrowski, W. Gawron and Z. Djuric: New generation of near-room-temperature photodetectors. Opt. Eng. 33, 1413-1421, 1994.
  • [40] J. Piotrowski: Hg1-xCdxTe infrared photodetectors. Infrared Photon Detectors, pp. 391-494, edited by A. Rogalski, SPIE, Bellingham, 1995.
  • [41] J. Piotrowski and W. Gawron: Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Phys. Techn. 38, 63-68, 1997.
  • [42] J. Piotrowski and M. Razeghi: Improved performance of IR photodetectors with 3D gap engineering. Proc. SPIE 2397, 180-192, 1995.
  • [43] J. Piotrowski, M. Grudzień, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis and W. Gawron: Uncooled photovoltaic Hg1-xCdxTeLWIR detectors. Proc. SPIE 4130, 175-184, 2000.
  • [44] J. Piotrowski: Uncooled operation of IR photodetectors. Opto-Electron. Rev. 12, 11-122, 2004.
  • [45] J. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors, SPIE, Bellingham, 2007.
  • [46] A. Piotrowski and J. Piotrowski, Room Temperature Photodetectors, Willey (to be published in 2009).
  • [47] J. Piotrowski, Z. Djurić, W. Galus, V. Jović, M. Grudzień, Z. Djinović and Z. Nowak: Composition and thickness control of CdxHg1-xTe layers grown by open tube isothermal vapour phase epitaxy. J. Cryst. Growth 83, 122-126, 1987.
  • [48] J. Piotrowski, Z. Nowak, M. Grudzień, W. Galus, K. Adamiec, Z. Djurić, V. Jović and Z. Djinović: High capability, quasi closed growth system for isothermal vapour phase epitaxy of (Hg,Cd)Te. Thin Solid Film 161, 157-169, 1988.
  • [49] Z. Djuric and J. Piotrowski: Generalized model of the isothermal vapour phase epitaxy of HgCdTe. Appl. Phys. Lett. 51, 1699-1701, 1987.
  • [50] K. Adamiec, M. Grudzień, Z. Nowak, J. Pawluczyk, J. Piotrowski, J. Antoszewski, J. Dell, C. Musca and L. Faraone: Isothermal vapour phase epitaxy as a versatile technology for infrared photodetectors. Proc. SPIE 2999, 34-43, 1997.
  • [51] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, M. Romanis, M. Grudzień, A. Rogalski and J. Piotrowski: MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors. Opto-Electron. Rev. 12, 453-458, 2004.
  • [52] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, M. Grudzień, J. Piotrowski and A. Rogalski: Recent progress in MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors. Proc. SPIE 5957, 273-284, 2005.
  • [53] A. Piotrowski, W. Gawron, K. Klos, J. Pawluczyk, J. Piotrowski, P. Madejczyk and A. Rogalski: Improvements in MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors. Proc. SPIE 5957, 108-116, 2005.
  • [54] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos J. Pawluczyk, J. Rutkowski, J. Piotrowski and A. Rogalski: Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors. Infrared Phys. Techn. 49, 173-182, 2007.
  • [55] Vigo System S.A. (2008, unpublished)
  • [56] VIGO System S.A. Website http://www.vigo.com.pl
  • [57] A. Piotrowski, K. Kłos, W. Gawron, J. Pawluczyk, Z. Orman and J. Piotrowski: Uncooled or minimally cooled 10 μm photodetectors with subnanosecond response time. Proc. SPIE 6542, 65421B, 2007.
  • [58] A. Bocci, A. Drago A. Marcelli and J. Piotrowski: Beam diagnostics at IR wavelengths at NSRL. 09 Particle Accelerator Conference, Vancouver. (to be published).
  • [59] MEMFIS project website, http://www.memfis.project.eu/
  • [60] T. Elliott, N. T. Gordon and A. M. White: Towards background-limited, room-temperature, infrared photon detectors in the 3-13 μm wavelength range. Appl. Phys. Lett. 74, 2881-2883, 1999.
  • [61] M. A. Kinch: Infrared Detector Materials, SPIE Press, Bellingham, 2007.
  • [62] APSYS Device Simulator, Software Package, Crosslight Software Inc, Canada.
  • [63] C. T. Elliott: Photoconductive and non-equilibrium devices in HgCdTe and related alloys. Infrared Detectors and Emitters: Materials and Devices, pp. 279-312, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2000.
  • [64] M. K. Ashby, N. T. Gordon, C. T. Elliott, C. L. Jones, C. D. Maxey, L. Hipwood and R. Catchpole: Investigation into the source of 1/f noise in Hg1-xCdxTe diodes. J. Electron. Mater. 33, 757-765, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.