PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nature of gallium deep centres in lead telluride based semiconductors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
IR and THz Electronics : from Materials to Devices of E-MRS 2009 ; (15-18.09.2009 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Doped with Ga lead telluride was taken as a model object to explain the nature of group-III deep levels in IV-VI semiconductors and to elucidate the vapour phase doping mechanism. For this goal, interaction of various gallium-containing molecules with defect-free crystal as well as with native defects in PbTe was considered. Formation energies for different point defects created in PbTe as a result of interaction the Ga2Te molecules, Ga2 dimers and single Ga atoms with a host crystal were calculated using density functional theory. Particularly GaPb and Gai together with formation of accompanied self interstitials Pbi in various charge states were examined. In addition we propose the new type of defects - the impurity complex (2Ga)Pb which looks like <111>-oriented gallium dumbbell. Calculations suggest the double donor behaviour and DX-like properties of this defect together with extremely low formation energy values. Namely, (2Ga)Pb centres are preferably formed under Ga2Te doping while (Ga2)Pb+Pbi ones are formed under Ga2 or Ga doping. In all cases, formation energies are negative and resulting defect concentration is determined by reaction kinetics only. Mechanisms of the lead vacancy compensation with the vapour phase doping are considered as well.
Twórcy
Bibliografia
  • [1] B. A. Volkov, L. I. Ryabova and D. R. Khokhlov: Mixed valence impurities in lead-telluride-based solid solutions. Phys-Usp. 172, 819-851, 2002.
  • [2] L. I. Ryabova and D. R. Khokhlov: Problem of impurity states in narrow-gap lead telluride-based semiconductors. JETP Lett. 80, 133-139, 2004.
  • [3] F. F. Sizov, S. V. Plyatsko and V. M. Lakeenkov: Deep levels in PbTe. Sov. Phys. Semicond. 19, 368-371, 1985.
  • [4] Y. I. Ravich and S. A. Nemov: Hopping conduction via highly localized impurity states of indium in PbTe and its solid solutions. Semiconductors 36, 1-20, 2002.
  • [5] S. Ahmad, K. Hoang and S. D Mahanti: Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett. 96, 056403-4, 2006.
  • [6] S. Ahmad, S. D. Mahanti, K. Hoang and M. G. Kanatzidis: Ab initio studies of the electronic structure of defects in PbTe. Phys. Rev. B74, 155205-13, 2006.
  • [7] K. Hoang, S. D. Mahanti and P. Jena: Theoretical study of deep-defect states in bulk PbTe and in thin films. Phys. Rev. B76, 115432-18, 2007.
  • [8] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Dolland, N. M. Harrison, I. J. Bush, P. D'arco and M. Llunell, CRYSTAL06 User's Manual, University of Torino, Torino, 2006.
  • [9] S. H. Vosko, L. Wilk and M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200-1211, 1980.
  • [10] J. P. Perdew, K. Burke and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868, 1996.
  • [11] B. Metz, H. Stoll and M. Dolg: Small-core multiconfiguration-Dirac-Hartree-Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J. Chem. Phys. 113, 2563-2569, 2000.
  • [12] K. A. Peterson: Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements. J. Chem. Phys. 119, 11099-11112, 2003.
  • [13] K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg: Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 119, 11113-11123, 2003.
  • [14] A. K. Wilson, D. E. Woon, K. A. Peterson and T. H. Dunning: Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys. 110, 7667-7676, 1999.
  • [15] CRC Handbook of Chemistry and Physics, edited by D.R. Lide, CRC Press, Boca Raton, 89th ed., 2008.
  • [16] K. Hummer, A. Grüneis and G. Kresse: Structural and electronic properties of lead chalcogenides from first principles. Phys. Rev. B75, 195211-9, 2007.
  • [17] A. Gali, P. Deák, P. Ordejón, N. T. Son, E. Janzén and W. J. Choyke: Aggregation of carbon interstitials in silicon carbide: A theoretical study. Phys. Rev. B68, 125201-11, 2003.
  • [18] Y. Yan, S. B. Zhang and S. T. Pantelides: Control of doping by impurity chemical potentials: predictions for p-type ZnO. Phys. Rev. Lett. 86, 5723-5726, 2001.
  • [19] B. Cheong, C. H. Park and K. J. Chang: First-principles study of the compensation mechanism for nitrogen acceptors in ZnSe. Phys. Rev. B51, 10610-10614, 1995.
  • [20] A. M. Samoylov, M. K Sharov, S. A. Buchnev, A. M. Khoviv and E. A. Dolgopolova: Crystal structure, carrier concentration and IR-sensitivity of PbTe thin films doped with Ga by two different methods. J. Cryst. Growth 240, 340-346, 2002.
  • [21] A. M. Samoylov, S. A. Buchnev, A. M. Khoviv, E. A. Dolgopolova and V. P. Zlomanov: Comparative study of point defects induced in PbTe thin films doped with Ga by different techniques. Mat. Sci. Semicon. Proc. 6, 481-485, 2003.
  • [22] Y. A. Ugai, A. M. Samoilov, M. K. Sharov, O. B. Yatsenko and B. A. Akimov: Transport properties of Ga-Doped PbTe thin films on Si substrates. Inorg. Mater. 38, 12-16, 2002.
  • [23] S. B. Zhang and J. E. Northrup: Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339-2342, 1991.
  • [24] S. B. Zhang: The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: A review. J. Phys. Condens. Mat. 14, R881-R903, 2002.
  • [25] F. F. Sizov and S. V. Plyatsko: Homogeneity range and non-stoichiometric defects in IV-VI narrow-gap semiconductors. J. Cryst. Growth 92, 571-580, 1988.
  • [26] B. A. Akimov, V. A. Bogoyavlenskiy, L. I. Ryabova, V. N. Vasil'kov and S. P. Zimin: Photoconductivity kinetics in high resistivity n-PbTe(Ga) epitaxial films. Semicond. Sci. Tech. 14, 679-684, 1999.
  • [27] W. R. Wadt and P. J. Hay: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284-298, 1985.
  • [28] G. Mallia, R. Orlando, C. Roetti, P. Ugliengo and R. Dovesi: F center in LiF: A quantum mechanical ab initio investigation of the hyperfine interaction between the unpaired electron at the vacancy and its first seven neighbours. Phys. Rev. B63, 235102-7, 2001.
  • [29] F. Neese and E. J. Solomon: Interpretation and calculation of Spin-Hamiltonian parameters in transition metal complexes. Magnetism: Molecules to Materials, pp. 345-466, edited by J. S. Miller, and M. Drillon, Wiley-VCH Verlag, Weinheim, 2003.
  • [30] L. A. Errico and M. Rentería: Ab initio determination of the nuclear quadrupole moments of 114In, 115In and 117In. Phys. Rev. B73, 115125-6, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.