PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of single-layer and bilayer InAs/GaAs quantum dots with a higher InAs coverage

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
IR and THz Electronics : from Materials to Devices of E-MRS 2009 ; (15-18.09.2009 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Epitaxially grown self-assembled InAs quantum dots (QDs) have found applications in optoelectronics. Efforts are being made to obtain efficient quantum-dot lasers operating at longer telecommunication wavelengths, specifically 1.3 µm and 1.55 µm. This requires narrow emission linewidth from the quantum dots at these wavelengths. In InAs/GaAs single layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dot (BQD) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 µm at 8 K) with significantly narrow linewidth (∼16.7 meV). Here, we compare the properties of single layer and bilayer quantum dots grown with higher InAs monolayer coverage. In the BQD structure, only the top QD layer is covered with increased (3.2 ML) InAs monolayer coverage. The emission line width of our BQD sample is found to be insensitive towards post growth treatments.
Twórcy
autor
autor
autor
  • Centre for Nanoelectronics, Indian Institute of Technology Bombay, 400076 Mumbai, Maharashtra India
Bibliografia
  • [1] Y. Arakawa and H. Sakaki: Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939, 1982.
  • [2] M. Asada, Y. Miyamoto and Y. Suematsu: Gain and the threshold of three.dimensional quantum-box lasers. IEEE J. Quantum Elect. 22, 1915-1921, 1986.
  • [3] QD Laser Inc., QD Laser Commercializes Quantum Dot Laser QLF-13 Series Featuring 10 Gbps High-speed Operation for Optical Telecom Applications, Press release, March 23, 2009, URL: http://www.qdlaser.com/release01.html
  • [4] M. Sugawara and M. Usami: Quantum dot devices: Handling the heat. Nat. Photonics 3, 30-31, 2009.
  • [5] A. Strittmatter, T. D. Germann, Th. Kettler, K. Posilovic, J. Pohl, U. W. Pohl and D. Bimberg: Suppression of the wavelength blue shift during overgrowth of InGaAs-based quantum dots. J. Cryst. Growth 310, 5066-5068, 2008.
  • [6] E. Clarke, P. Spencer, E. Harbord, P. Howe and R. Murray: Growth, optical properties and device characterisation of InAs/GaAs quantum dot bilayers. J. Phys.: Conf. Ser. 107, 012003, 2008.
  • [7] E. C. Le Ru, P. Howe, T. S. Jones and R. Murray: Strain-engineered InAs/GaAs quantum dots for long-wavelength emission. Phys. Rev. B67, 165333, 2003.
  • [8] H. Jiang and J. Singh: Self-assembled semiconductor structures: Electronic and optoelectronic properties. IEEE J. Quantum Elect. 34, 1188-1196, 1998.
  • [9] W. Seifert, N. Carlsson, M. Miller, M. E. Pistol, L. Samuelson and L. R. Wallenberg: In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode. Prog. Cryst. Growth Ch. 33, 423-471, 1996.
  • [10] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce and T. S. Jones: Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy. Phys. Rev. B62, 10891, 2000.
  • [11] D. Leonard, K. Pond and P. M. Petroff: Critical layer thickness for self-assembled InAs island on GaAs. Phys. Rev. B50, 11687, 1994.
  • [12] Z. Gong, Z. D. Fang, Z. H. Miao, Z. C. Niu and S. L. Feng: Structural and optical properties of InAs/GaAs quantum dots emitting at 1.5 μm. J. Cryst. Growth 274, 78-84, 2005.
  • [13] S. Chakrabarti, N. Halder, S. Sengupta, J. Charthad, S. Ghosh and C. R. Stanley: Photoluminescence investigation of the effects of barrier thickness and monolayer coverage on properties of bilayer InAs/GaAs quantum dots. J. Nano. electron. Optoe. 3, 277-280, 2008.
  • [14] M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl and N. Y. Jin-Phillipp: Strain-induced material intermixing of InAs quantum dots in GaAs. Appl. Phys. Lett. 77, 1789, 2000.
  • [15] I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen and A. Madhukar: Independent manipulation of density and size of stress-driven self-assembled quantum dots. Appl. Phys. Lett. 73, 1841, 1998.
  • [16] J. S. Wang, J. F. Chen, J. L. Huang, P. Y. Wang and X. J. Guo: Carrier distribution and relaxation-induced defects of InAs/GaAs quantum dots. Appl. Phys. Lett. 77, 3027, 2000.
  • [17] B. L. Liang, Z. M. Wang, Yu. I. Mazur, V. V. Strelchuck and G. J. Salamo: Growth and characterization of bilayer InAs/GaAs quantum dot structure. Phys. Status Solidi 203, 2403-2410, 2006.
  • [18] Q. Xie, A. Madhukar, P. Chen and N. P. Kobayashi: Vertically self.organised InAs quantum dot islands on GaAs(100). Phys. Rev. Lett. 75, 2542-2545, 1995.
  • [19] G. S. Solomon, J. A. Trezza, A. F. Marshall and J. S. Harris, Jr.: Vertically aligned and electronically coupled growth induced InAs islands in GaAs. Phys. Rev. Lett. 76, 952-955, 1996.
  • [20] A. Babinski, J. Jasinski, R. Bozek, A. Szepielow and J. M. Baranowski: Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl. Phys. Lett. 79, 2576, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.