PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity of a VCSEL threshold performance to inaccuracies in its manufacturing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes an impact of various possible inaccuracies in manufacturing of verticalcavity surface-emitting diode lasers (VCSELs), like thicknesses and compositions of their layers different from assumed ones, on VCSEL room-temperature (RT) continuous-wave (CW) threshold performance. To this end, the fully self-consistent comprehensive optical-electrical-thermal-recombination VCSEL model has been applied. While the analysis has been carried out for the 1.3 µm oxide-confined intra-cavity contacted GaInNAs/GaAs VCSEL, its conclusions are believed to be more general and concern most of modern VCSEL designs. As expected, the VCSEL active region has been found to require the most scrupulous care in its fabrication, any uncontrolled variation in compositions and/or thicknesses of its layers is followed by unaccepted RT CW lasing threshold increase. Also spacer thicknesses should be manufactured with care to ensure a proper overlapping of the optical standing wave and both the gain and lossy areas within the cavity. On the contrary, less than 5% thickness changes in distributed-Bragg-reflectors are followed by nearly insignificant changes in VCSEL RT CW threshold. However, exceeding the above limit causes a rapid increase in lasing thresholds. As expected, in all the above cases, VCSELs equipped with larger active regions have been confirmed to require more careful technology. The above results should enable easier organization of VCSEL manufacturing.
Twórcy
autor
autor
  • Laboratory of Computer Physics, Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 90-924 Łódź, Poland
Bibliografia
  • [1] H. P. D. Yang, C. Lu, R. Hsiao, C. Chiou, C. Lee, C. Huang, H. Yu, C. Wang, K. Lin, N. A. Maleev, A. R. Kovsh, C. Sung, C. Lai, J. Wang, J. Chen, T. Lee and J. Y. Chi: Characteristics of MOCVD- and MBE-grown InGa(N)As VCSELs. Semicond. Sci. Tech. 20, 834-839, 2005.
  • [2] W. Nakwaski: Principles of VCSEL designing. Opto-Electron. Rev. 16, 18-26, 2008.
  • [3] H. Wenzel and H. J. Wünsche: The effective frequency method in the analysis of vertical-cavity surface-emitting lasers. IEEE J. Quantum Elect. 33, 1156-1162, 1997.
  • [4] R. P. Sarzała and W. Nakwaski: Optimisation of the 1.3-μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation (invited paper). J. Phys. Condens. Mat. 16, S3121-S3140, 2004.
  • [5] R. P. Sarzała: Designing strategy to enhance mode selectivity of higher-output oxide-confined vertical-cavity surface-emitting lasers. Appl. Phys. A81, 275-283, 2005.
  • [6] T. Czyszanowski and W. Nakwaski: Comparison of exactness of scalar and vectorial optical methods used to model a VCSEL operation. IEEE J. Quantum Elect. 41, 399-406, 2007.
  • [7] M. Gruppen, K. Hess and G. H. Song: Simulation of transport over heterojunctions. Simulation of Semiconductor Devices and Processes, Vol. 4, pp. 303-311, edited by W. Fichtner and D. Aemmer, Zurich, 1991.
  • [8] C. Z. Ning, R. A. Indik, J. V. Moloney, W. W. Chow, A. Girndt, S. W. Koch and R. Binder: Incorporating many-body effects into modelling of semiconductor lasers and amplifiers. Proc. SPIE 2994, 666-677, 1997.
  • [9] E. Gęsikowska and W. Nakwaski: An impact of multi-layered structures of modern optoelectronic devices on their thermal properties. Opt. Quant. Electron. 40, 205-216, 2008.
  • [10] M. Streiff, A. Witzig, M. Pfeiffer, P. Royo and W. Fichtner: A comprehensive VCSEL device simulator. IEEE J. Sel. Top. Quant. 9, 879-891, 2003.
  • [11] M. Streiff, W. Fichtner and A. Witzig: Vertical-cavity surface-emitting lasers: Single-mode control and self-heating effects. Optoelectronic Devices. Advanced Simulation and Analysis, Ch. 8, pp. 217-247, edited by J. Piprek, Springer, New York, 2005.
  • [12] B. Witzigmann, M. Aschwanden, V. Laino, M. Luisier, S. Odermatt, M. Streiff, A. Witzig, P. Royo, and D. Vez: Comprehensive simulation of vertical cavity surface emitting lasers: Inclusion of a many-body gain model. J. Comput. Electron. 4, 7-10, 2005.
  • [13] M. Osiński and W. Nakwaski: Three-dimensional simulation of vertical-cavity surface-emitting semiconductor lasers. Vertical-Cavity Surface-Emitting Laser Devices, Ch. 5, pp. 135-191, edited by H. Li and K. Iga, Springer, Berlin, 2003.
  • [14] D. Xu, C. Tong, S. F. Yoon, W. Fan, D. H. Zhang, M. Wasiak, Ł. Piskorski, K. Gutowski, R. P. Sarzała and W. Nakwaski: Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3-μm optical fiber communication. Semicond. Sci. Techn. 24, 055003 2009. (in print)
  • [15] V. Swaminathan, J. L. Zilko, W. T. Tsang and W. R. Wagner: Photoluminescence study of acceptors in AlxGa1-xAs. J. Appl. Phys. 53, 5163-5168, 1982.
  • [16] Ch. Köpf, G. Kaiblinger-Grujin, H. Kosina and S. Selberherr: Reexamination of electron mobility dependence on dopants in GaAs. Proc. 27th European Solid-State Device Research Conf., Stuttgart, 304-307, 1997.
  • [17] N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. C. Chang and H. Morko: Comprehensive analysis of Si-doped AlxGa1-xAs (x = 0 to 1): Theory and experiments. Phys. Rev. B30, 4481-4492, 1984.
  • [18] M. Ayabe, Y. Mori and N. Watanabe: An anomaly in the relation of Hall coefficient to resistivity in n-type AlxGa1-xAs. Jpn. J. Appl. Phys. 20, L55-L58, 1981.
  • [19] K. D. Maglić and D. Z. Pavicić: Thermal and electrical properties of titanium between 300 and 1900 K. Intern. J. Thermophys. 22, 1629-1670, 2001.
  • [20] CRC Handbook of Chemistry and Physics, Interviet Version 2005, edited by D.R. Lide, CRC Press, Boca Raton, Florida, 2005.
  • [21] E. Goldratt: Experimental test of the Wiedemann-Franz law for indium. J. Phys. F: Metal Physics 10, L95-L99, 1980.
  • [22] R. P. Sarzała and W. Nakwaski: Carrier diffusion inside active-regions of gain-guided vertical-cavity surface-emitting lasers. IEE P-Optoelectron. 144, 421-425, 1997.
  • [23] O. Anton, C. S. Menoni, J. Y. Yeh, L. J. Mawst, J. M. Pikal and N. Tansu: Increased monomolecular recombination in MOCVD grown 1.3 μm InGaAsN-GaAsP-GaAs QW lasers from carrier lifetime measurements. IEEE Photonic Tech. L. 17, 953-955, 2005.
  • [24] S. Adachi: GaAs, AlAs, and AlxGa1-xAs: Materials parameters for use in research and device applications. J. Appl. Phys. 58, R1-R29, 1985.
  • [25] M. Le Du, D. Massoubre, J. C. Harmand and J. L. Oudar: Thermal conductance of laterally-wet-oxidized GaAs/AlxOy Bragg reflectors. Electron. Lett. 42, 65-66, 2006.
  • [26] T. Som, P. Ayyub, D. Kabiraj, N. Kulkarni, V. N. Kulkarni and D. K. Avasthi: Formation of Au(0.6)Ge(0.4) alloy induced by Au-ion irradiation of Au/Ge bilayer. J. Appl. Phys. 93, 903-906, 2003.
  • [27] S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen and H. Sigg: The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modelling. J. Appl. Phys. 87, 7825-7837, 2000.
  • [28] T. Kitatani, M. Kondow, K. Shinoda, Y. Yazawa, M. Okai and K. Uomi: Extremely large refractive index of strained GaInNAs thin films. Proc. 10th Int. Conf. on Indium Phosphide and Related Materials, Tsukuba, 1998.
  • [29] T. Kitatani and M. Kondow: Characterization of the refractive index of lateral-oxidation-formed AlxOy by spectroscopic elipsometry. Jpn. J. Appl. Phys. 41, 2954-2957, 2002.
  • [30] S. Adachi: GaAs and Related Materials. Bulk Semiconducting and Superlattice Properties. World Scientific, Singapore, 1994.
  • [31] H. G. Grimmeiss and B. Monemar: Temperature dependence of the refractive index of AlAs and AlP. Phys. Status Solidi (a) 5, 109-114, 1971.
  • [32] T. Kitatani, M. Kondow, S. Nakatsuka, Y. Yazawa and M. Okai: Room-temperature lasing operation of GaInNAs-GaAs single-quantum-well laser diodes. IEEE J. Sel. Top. Quant. 3, 206-209, 1997.
  • [33] C. Tanguy: Temperature dependence of the refractive index of direct band gap semiconductors near the absorption threshold: Application to GaAs. J. Appl. Phys. 80, 4626-4631, 1996.
  • [34] W. G. Spitzer and J. M. Whelan: Infrared absorption and electron effective mass in n-type gallium arsenide. Phys. Rev. 144, 59-63, 1959.
  • [35] S. Tomić and E. P. O'Reilly: Gain characteristics of ideal dilute nitride quantum well lasers. Physica E13, 1102-1105, 2002.
  • [36] L. F. Xu, D. Patel, C. S. Menoni, J. Y. Yeh, L. J. Mawst and N. Tansu: Optical determination of the electron effective mass of strain compensated In0.4Ga0.6As0.995N0.005/GaAs single quantum well. Appl. Phys. Lett. 89, 171112, 2006.
  • [37] S. Fukushima, K. Nozoe, T. Saisyo, T. Ikari and M. Kondow: Temperature and thickness dependences of electron nonradiative transitions in GaInNAs/GaAs SQW investigated by piezoelectric photothermal spectroscopy. IEE Proc.-Optoelectron. 151, 297-302, 2004.
  • [38] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815-5875, 2001.
  • [39] N. Ahmed, I. R. Agool, M. G. Wright, K. Mitchell, K. Koohian, S. J. A. Adams, C. R. Pidgeon, B. C. Cavenett, C. R. Stanley and A. H. Kean: Far infrared optically detected cyclotron resonance in GaAs layers and low-dimensional structures. Semicond. Sci. Tech. 7, 357-363, 1992.
  • [40] Y. S. Kang, L. H. Robins, A. G. Birdwell, A. J. Shapiro, W. R. Thurber, M. D. Vaudin, M. M. E. Fahmi, D. Bryson and S. N. Mohammad: Photoreflectance study of the electronic structure of Si-doped InyGa1-yAs1-xNx films with x < 0.012. Phys. Status Solid. (c) 2, 2800-2804, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.