PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Acoustogyration diffraction of optical waves : case of SiO₂ and TeO₂ crystals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interaction of acoustic and light waves with accounting for elastooptic and elastogyration effects is theoretically described. Collinear acoustogyration diffraction in quartz and paratellurite crystals is experimentally investigated and thoroughly analyzed. Piezogyration effect is experimentally studied for TeO₂ crystals. The acoustogyration efficiency and the acoustogyration figure of merit calculated for a number of crystals (GaAs, TeO₂ and SiO₂) are shown to be too small for experimental detection. On the other hand, we demonstrate that the light diffraction at periodical distribution of the imaginary part of dielectric permittivity related to the piezogyration effect should, in principle, be observed for the case of interaction of optical waves with enantiomorphous ferroelastic domain structure and in cholesteric liquid crystals.
Twórcy
autor
autor
autor
  • Institute of Physical Optics, 23 Dragomanov Str., 79005 Lviv, Ukraine
Bibliografia
  • [1] K Aizu: Ferroelectric transformations of tensorial properties in regular ferroelectrics. Phys. Rev. A133, 1350-1359, 1964.
  • [2] O. G. Vlokh and T. D. Krushel'nitskaya: Axial fourthrank tensors and quadratic electrogyration. Kristallografiya 15, 587-589, 1970.
  • [3] V. S. Lvov: Optical activity of deformed crystals. Fiz. Tverd. Tela 9, 1273-1275, 1967.
  • [4] R. Vlokh, O. Vlokh, Yu. Pyatak and I. Skab: Acoustogyration diffraction of light. Ferroelectrics 110, 1117-1121, 1990.
  • [5] G. Khitrova, D. Roude, N. V. Kukhtarev and H. M. Gibbs: New nonphotorefractive mechanism for two beam coupling in a crystallographiccut photorefractive crystal. Phys. Rev. Lett. 62, 1110-1113, 1989.
  • [6] M. G. Gazalet, S. Carlier, J. P. Picault, G. Waxin and C. Bruneel: Multifrequency paratellurite acoustooptic modulators. Appl. Optics 24, 4435-4438, 1985.
  • [7] M. G. Gazalet, G. Waxin, J. M. Rouvaen, R. Torguet and E. Bridoux: Independent acoustooptic modulation of the two wavelengths of a bichromatic light beam. Appl. Optics 23, 674-681, 1984.
  • [8] W. Warner, D. L. White and W. A. Bonner: Acoustooptic light deflectors using optical activity in paratellurite. J. Appl. Phys. 43, 4489-4495, 1972.
  • [9] R. S. Seymour: Acoustooptic Bragg diffraction in anisotropic optically active media. Appl. Optics 29, 822-826, 1990.
  • [10] P. A. Gass, S. Schalk, and J. R. Sambles: Highly sensitive optical measurement techniques based on acoustooptic devices. Appl. Optics 33, 7501-7510, 1994.
  • [11] T. Yano and A. Watanabe: Acoustooptic figure of merit of TeO2 for circularly polarized light, J. Appl. Phys. 45, 1243-1245, 1974.
  • [12] R. Vlokh, O. Krupych and I. Martynyuk-Lototska: On the acoustogyration diffraction of light. Ukr. J. Phys. Opt. 8, 143-157, 2007.
  • [13] O. G. Vlokh: Spatial Dispersion Phenomena in Parametrical Crystal Optics, Vyshcha Shkola, Lviv, 1984.
  • [14] M. P. Shaskolskaya: Acoustic Crystals, Nauka, Moscow, 1982.
  • [15] N. Uchida: Optical properties of singlecrystal paratellurite (TeO2). Phys. Rev. B4, 3736-3745, 1971.
  • [16] H. J. Weber: Electrogyration and piezogyration in NaClO3. Acta Crystallogr. A35, 225-232, 1979.
  • [17] O. G. Vlokh and V. B. Kobylyanskii: The influence of parameters of gyrotropic crystals on the behaviour of light polarization. Ukr. Fiz. Zh. 19, 40-46, 1974.
  • [18] V. I. Balakshii, V. N. Parygin and L. E. Chirkov, Physical Fundamentals of Acoustooptics; Radio i Sviaz, Moscow, 1985.
  • [19] R. Vlokh, Yu. Pyatak and I. Skab: Piezogyration in enantiomorphous quartz crystals. Opt. Spektrosk. 70, 243-244, 1991.
  • [20] M. B. Myers and K. Vedam: Effect of pressure on the optical rotatory power and dispersion of alphaquartz. J. Opt. Soc. Am. 56, 1741-1748, 1966.
  • [21] M. B. Myers and K. Vedam: Effect of pressure on the optical rotary power and dispersion of crystalline sodium chlorate. J. Opt. Soc. Am. 57, 1146-1148, 1967.
  • [22] L. E. Solov'ev: Piezooptical activity of cubic crystals. Opt. Spektrosk. 46, 1020-1022, 1979.
  • [23] A. Kh. Zilbernstein, S. Yu. Kozicyna and L. E. Solov'ev: Studies of the phenomenon of pseudocrossing of dispersion curves under electric field and axial deformations. Opt. Spektrosk. 41, 513-515, 1976.
  • [24] L. E. Solov'ev and M. O. Chayka: Optical activity of ZnSe, GaAs and CdTe induced by uniaxial deformation. Fiz. Tverd. Tela 22, 970-975, 1980.
  • [25] M. V. Hobden: Optical activity in a nonenantiomorphous crystal: AgGaS2. Acta Crystallogr. A24, 676-680, 1968.
  • [26] H. J. Weber: Electrogyration and piezogyration in NaClO3. Acta Crystallogr. A35, 225-232, 1979.
  • [27] I. V. Berezhnoy, O. G. Vlokh and Ya. I. Shopa: Gyrotropic properties of ammonium Rochelle salt. Izv. AN SSSR Fiz. 51, 2186-2189, 1987.
  • [28] O. G. Vlokh and L. A. Lazko: Optical properties of the K2Cd2(SO4)3 ferroelastic. Ferroelectrics 56, 1107-1110, 1984.
  • [29] R. O. Vlokh and V. Y. Slivka: Enantiomorphism of ferroelastic domains. Ferroelectrics 98, 167-169, 1989.
  • [30] R. O. Vlokh, Z. Yu. Gotra, O. V. Kovpak and I. P. Skab: Piezogyration in K2Cd2(SO4)3 ferroelastics. Ukr. Fiz. Zh. 40, 342-344, 1995.
  • [31] R. Vlokh, Z. Gotra, Yu. Pyatak and I. Skab: Elastooptic and elastogyration light diffraction by the domain structure of Ba2NaNb5O15 crystals. Ferroelectrics 157, 147-152, 1994.
  • [32] S. Chandrasekhar, Liquid Crystals, Cambridge University Press, Cambridge, 1977.
  • [33] A. P. Kapustin and O. A. Kapustina: Acoustics of Liquid Crystals, Nauka, Moscow, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.