PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent advances on single photon sources based on single colloidal nanocrystals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single colloidal quantum dots (QDs) are increasingly exploited as triggered sources of single photons. This review reports on recent results on single photon sources (SPS) based on colloidal quantum dots, whose size, shape and optical properties can be finely tuned by wet chemistry approach. First, we address the optical properties of different colloidal nanocrystals, such as dots, rods and dot in rods and their use as single photon sources will be discussed. Then, we describe different techniques for isolation and positioning single QDs, a major issue for fabrication of single photon sources, and various approaches for the embedding single nanocrystals inside microcavities. The insertion of single colloidal QDs in quantum confined optical systems allows one to improve their overall optical properties and performances in terms of efficiency, directionality, life time, and polarization control. Finally, electrical pumping of colloidal nanocrystals light emitting devices and of NC-based single photon sources is reviewed.
Twórcy
autor
autor
autor
autor
autor
  • National Nanotechnology Laboratory of CNR-INFM, c/o Distretto Tecnologico ISUFI - Universita del Salento, Via Arnesano, 73100 Lecce, Italy, massimo.devittorio@unile.it
Bibliografia
  • [1] D. Bouwmeester, A. K. Ekert and A. Zeilinger: The Physics of Quantum Information, Springer, Berlin, 2000.
  • [2] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams and J. P. Dowling: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733-2736, 2000.
  • [3] E. Knill, R. Laflamme and G. J. Milburn: A scheme for efficient quantum computation with linear optics. Nature 409, 46-52, 2001.
  • [4] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden: Quantum cryptography. Rev. Mod. Phys. 74, 145-195, 2002.
  • [5] P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse and S. K. Buratto: Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968-970, 2000.
  • [6] M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant and Y. Yamamoto: Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602-233605, 2002.
  • [7] W. K. Wootters and W. H. Zurek: A single quantum cannot be cloned. Nature 299, 802-803, 1982.
  • [8] C. H. Bennett and G. Brassard: Int. Conf. on Computers, Systems and Signal Processing, 175, Bangalore, 1984.
  • [9] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin: Experimental quantum cryptography. J. Cryptol. 5, 3-28, 1992.
  • [10] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden: Quantum cryptography. Rev. Mod. Phys. 74, 145-195, 2002.
  • [11] B. Lounis and M. Orrit: Single-photon sources. Rep. Prog. Phys. 68, 1129-1179, 2005.
  • [12] A. J. Shields: Semiconductor quantum light sources. Nat. Photonics 1, 215-223, 2007.
  • [13] A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. P. Poizat and P. Grangier: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901-187904, 2008.
  • [14] E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon and Y. Yamamoto: Secure communication: Quantum cryptography with a photon turnstile. Nature 420, 762-762, 2002.
  • [15] T. H. Lee, P. Kumar and A. Mehta: Oriented semiconducting polymer nanostructures as on-demand room-temperature single-photon source. Appl. Phys. Lett. 85, 100-102, 2004.
  • [16] C. Kurtsiefer, S. Mayer, P. Zarda and H. Weinfurter: Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290-293, 2000.
  • [17] S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher and A. Forchel: Quantum optical studies on individual acceptor bound excitons in a semiconductor. Phys. Rev. Lett. 89, 177403, 2002.
  • [18] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu and A. Imamoglu: A quantum dot single-photon turnstile device. Science 290, 2282-2285, 2000.
  • [19] Y. Arakawa and H. Sakaki: Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939-941, 1982.
  • [20] I. N. Stranski and L. Von Krastanow: Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse. Akademie der Wissenschaften und der Literatur in Mainz 146, 797, 1939.
  • [21] T. Akiyama, M. Sugawara and Y. Arakawa: Quantum-dot semiconductor optical amplifiers. Proc. IEEE 95, 1757-1766, 2007.
  • [22] N. N. Ledentsov, D. Bimberg and Z. I. Alferov: Progress in epitaxial growth and performance of quantum dot and quantum wire lasers. J. Lightwave Technol. 26, 1540-1555, 2008.
  • [23] A. Salhi, G. Rainò, L. Fortunato, V. Tasco, G. Visimberga, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Trampert, M. De Vittorio and A. Passaseo: Enhanced performances of quantum dot lasers operating at 1.3 µm. IEEE J. Sel. Top. Quant. 14, 1188-1196, 2008.
  • [24] C. B. Murray, D. J. Norris and M. G. Bawendi: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706-8715, 1993.
  • [25] S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto and Y. Arakawa: A gallium nitride single-photon source operating at 200 K. Nat. Mater. 5, 887-892, 2006.
  • [26] P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse and S. K. Buratto: Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968-970, 2000.
  • [27] B. Lounis and W. E. Moerner: Single photons on demand from a single molecule at room temperature. Nature 407, 491-493, 2000.
  • [28] X. Brokmann, L. Coolen, M. Dahan and J. P. Hermier: Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett. 93 107403-107406, 2004.
  • [29] J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang and A. P. Alivisatos: Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060-2063, 2001.
  • [30] L. Manna, D. J. Milliron and A. Meisel, E. C. Scher and A. P. Alivisatos: Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382-385, 2003.
  • [31] D. V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann and H. Weller: Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano. Lett. 3, 1677, 2003.
  • [32] A. Fiore, R. Mastria, M. G. Lupo, G. Lanzani, C. Giannini, E. Carlino, G. Morello, M. De Giorgi, Y. Li, R. Cingolani and L. Manna: Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 131, 2274-2282, 2009.
  • [33] V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale and M. G. Bawendi: Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011-1013, 2000.
  • [34] M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris and L. E. Brus: Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802-804, 1996.
  • [35] B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier and B. Dubertret: Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659-664, 2008.
  • [36] X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros and T. D. Krauss: Non-blinking semiconductor nanocrystals. Nature 459, 686-689, 2009.
  • [37] S. A. Empedocles, D. J. Norris and M. G. Bawendi, Phys. Rev. Lett. 77, 3873-3876, 1996.
  • [38] H. P. Lu and X. S. Xie: Single-molecule spectral fluctuations at room temperature. Nature 385, 143-146, 1997.
  • [39] L. Biadala, Y. Louyer, P. Tamarat and B. Lounis: Direct observation of the two lowest exciton zero-phonon lines in single CdSe/ZnS nanocrystals. Phys. Rev. Lett. 103, 037404-037407, 2009.
  • [40] L. Coolen, X. Brokmann, P. Spinicelli and J. P. Hermier: Emission characterization of a single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy. Phys. Rev. Lett. 100, 027403-027406, 2008.
  • [41] L. Manna, E. Scher and A. P. Alivisatos: Synthesis of soluble and processable rod, arrow, teardrop, and tetrapod shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700-12706, 2000.
  • [42] C. M. Liddell and C. J. Summers: Monodispersed ZnS dimers, trimers, and tetramers for lower symmetry photonic crystal lattices. Adv. Mater. 15, 1715-1719, 2003.
  • [43] L. Carbone, C. Nobile, M. De Giorgi, F. Della Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne and L. Manna: Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano. Lett. 7, 2942, 2007.
  • [44] G. Morello, F. Della Sala, L. Carbone, L. Manna, G. Maruccio, R. Cingolani and M. De Giorgi: Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field. Phys. Rev. B78, 195313-195320, 2008.
  • [45] F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J. P. Hermier, L. Manna, R. Cingolani, E. Giacobino, M. De Vittorio and A. Bramati: Dots in rods as polarized single photon sources. Superlattices Microst. doi:10.1016/j.spmi. 2009.06.009, 2009.
  • [46] C. H. Bennet: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121-3124, 1992.
  • [47] F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J. P. Hermier, L. Manna, R. Cingolani, E. Giacobino, A. Bramati and M. De Vittorio: Polarized single photon emission for quantum cryptography based on colloidal nanocrystals. IEEE Proc. of 11 th Int. Conf. on Transparent Optical Networks, 1-4, 2009.
  • [48] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamolu: Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896-899, 2007.
  • [49] Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto and Y. Arakawa: Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity. Appl. Phys. Lett. 93, 183114, 2008.
  • [50] M. Toishi, D. Englund, A. Faraon and J. Vučković: High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt. Express 17, 14618-14626, 2009.
  • [51] E. Pelucchi, S. Watanabe, K. Leifer, Q. Zhu, B. Dwir, P. De Los Rios and E. Kapon: Mechanisms of quantum dot energy engineering by metalorganic vapour phase epitaxy on patterned nonplanar substrates. Nano. Lett. 7, 1282-1285, 2007. Q. Zhu, K. F. Karlsson, E. Pelucchi and E. Kapon: Transition from two-Dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots. Nano. Lett. 7, 2227-2233, 2007.
  • [52] C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling and A. Forchel: Single photon emission from a site-controlled quantum dot-micropillar cavity system. Appl. Phys. Lett. 94, 111111, 2009.
  • [53] P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba and E. Kapon: Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. Appl. Phys. Lett. 92, 263101, 2008.
  • [54] A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quélinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani and M. De Vittorio: Room temperature single-photon sources based on single colloidal nanocrystals in microcavities. Superlattices Microst. doi:10.1016/j.spmi.2009.05.004, 2009.
  • [55] A. Qualtieri, L. Martiradonna, T. Stomeo, M. T. Todaro, R. Cingolani and M. De Vittorio: Multicoloured devices fabricated by direct lithography of colloidal nanocrystals. Microelectron. Eng. 86, 1127-1130, 2009.
  • [56] R. Krahne, T. Dadosh, Y. Gordin, A. Yacoby, H. Shtrikman, D. Mahalu, J. Sperling and I. Bar-Joseph: Nanoparticles and nanogaps: controlled positioning and fabrication. Physica E17, 498-502, 2003.
  • [57] S. Yoshii, S. Kumagai, K. Nishio, A. Kadotani and I. Yamashita: Electrostatic self-aligned placement of single nanodots by protein supramolecules. Appl. Phys. Lett. 95, 133702, 2009.
  • [58] P. R. Berman: Cavity Quantum Electrodynamics, Academic Press, San Diego, CA, 1994, T. Mokari and U. Banin: Synthesis and properties of CdSe/ZnS core/shell nanorods. Chem. Mater. 15, 3955-3960, 2003.
  • [59] I. I. Rabi: Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652-654, 1937.
  • [60] L. Allen and J. H. Eberly: Optical Resonances and Two-Level Atoms. Wiley, New York, 1975.
  • [61] N. Le Thomas, U. Woggon and O. Schöps: Cavity QED with semiconductor nanocrystals. Nano. Lett. 6, 557-561, 2006.
  • [62] A. Shabaev and A. L. Efros: 1D exciton spectroscopy of semiconductor nanorods. Nano. Lett. 4, 1821-1825, 2004.
  • [63] C. Weisbuch, M. Nishioka, A. Ishikawa and Y. Arakawa: Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314-3317, 1992.
  • [64] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond and S. Haroche: Quantum Rabi oscillation: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800 (19960.
  • [65] R. J. Thompson, G. Rempe and H. J. Kimble: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132, 1992.
  • [66] R. K. Chang and A. J. Chamillo: Optical processes in microcavities. Advanced Series in Applied Physics 3, World Scientific, Singapore, 1996.
  • [67] H. Benisty, J. M. Gerard, R. Houdre, J. Rarity and C. Weisbuch: Confined photon systems. Lecture Notes in Physics 531, Springer-Verlag, Berlin, 1999.
  • [68] Y. Yamamoto, F. Tassone and H Cao: Semiconductor cavity quantum electrodynamics. Springer Tracts in Modern Physics 169, Springer-Verlag, Berlin 2000.
  • [69] M. Poitras, C. B. Lipson, H. Du, M. A. Hahn and T. D. Krauss: Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity. Appl. Phys. Lett. 82, 4032-4034, 2003.
  • [70] M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer and R. Bratschitsch: Colloidal quantum dots in all-dielectric high-Q pillar microcavities. Nano. Lett. 7, 2897-2900, 2007.
  • [71] L. Martidadonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani and M. De Vittorio: High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology. Appl. Phys. Lett. 88, 181108, 2006.
  • [72] M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski and W. Langbein: Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano. Lett. 1, 309-314, 2001.
  • [73] E. Yablonovitch: Inhibited spontaneous emission in solidstate physics and electronics. Phys. Rev. Lett. 58, 2059-2062, 1987.
  • [74] S. John: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486-2489, 1987.
  • [75] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim: Two-dimensional photonic bandgap defect mode laser. Science 284, 1819-1821, 1999.
  • [76] B. S. Song, S. Noda, T. Asano and Y. Akahane: Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207-210, 2004.
  • [77] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya and H. Taniyama: Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nat. Photonics 1, 49-52, 2007.
  • [78] Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu and J. Xu: Enhanced spontaneous emission at 1.55 µm from colloidal PbSe quantum dots in an Si photonic crystal microcavity. Appl. Phys. Lett. 90, 171105, 2007.
  • [79] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh and W. L. Vos: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654-657, 2004.
  • [80] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard and V. Thierry-Mieg: Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110-1113, 1998.
  • [81] S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud Jr and R. W. Boyd: Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources. J. Mod. Opt. 56, 167-174, 2009.
  • [82] A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quélinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani and M. De Vittorio: Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources. New J. Phys. 11, 033025, 2009.
  • [83] T. Förster: Intermolecular energy transference and fluorescence. Ann. Phys. Leipzig 2, 55-75, 1948.
  • [84] T. Förster: Experimentelle und theoretische untersuchung des zwischenmolekularen ubergangs von elektronenanre-gungsenergie. Z. Naturforsch. 4A, 321-327, 1949.
  • [85] S. Coe, W. K. Woo, M. Bawendi and V. Bulović: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800-803, 2002.
  • [86] V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354-357, 1994.
  • [87] H. Huang, A. Dorn, V. Bulovic and M. Bawendi: Electrically driven light emission from single colloidal quantum dots at room temperature. Appl. Phys. Lett. 90, 023110, 2007.
  • [88] J. Müller, J. M. Lupton, P. G. Lagoudakis, F. Schindler, R. Koeppe, A. L. Rogach, J. Feldmann, D. V. Talapin and H. Weller: Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano. Lett. 5, 2044-2049, 2005.
  • [89] K. Becker, J. M. Lupton, J. Müller, A. L. Rogach, D. V. Talapin, H. Weller and J. Feldmann: Electrical control of Förster energy transfer. Nat. Mater. 5, 777-781, 2006.
  • [90] A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerinkd and J. Feldmann: Energy transfer with semiconductor nanocrystals. J. Mater. Chem. 19, 1208-1221, 2009.
  • [91] M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske and V. I. Klimov: Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642-646, 2004.
  • [92] S. Nizamoglu, E. Sari, B. Jong-Hyeob, L. In-Hwan and H. Volkan Demir: Green/yellow solid-state lighting via radiative and nonradiative energy transfer involving colloidal semiconductor nanocrystals. IEEE J. Sel. Top. Quant. 15, 1163-1170, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.