PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractal-like diffractive arrangement with multiple focal points

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce a diffractive structure with a geometry which contains multiple Fresnel zone plates (MFZP) disposed in an arrangement based on a fractal-like rule. The corresponding diffracted intensity in planes perpendicular to the propagation axe presents two or more focal points. Their position and magnitude depend on geometrical parameters of the MFZP and on dimensions in the fractal-like arrangement. In our simulations we also analyze the influence in diffraction pattern of different non-binary phase levels in the MFZP plane. The MFZP structures with different values of geometrical and phase parameters are addressed to an optoelectronic device liquid crystal spatial light modulator (LCSLM), the experimental and simulation results are in a good agreement. The MFZP geometry with better optical parameters in diffraction pattern is then made on glass using electron beam lithography technique.
Twórcy
autor
autor
autor
Bibliografia
  • [1] X. Zhuang: Unraveling DNA condensation with optical tweezers. Science 305, 188-190, 2004.
  • [2] D. Cojoc, E. Ferrari, V. Garbin, E. Di Fabrizio, H. Amenitsch, M. Rappolt, B. Sartori, P. Laggner, M. Burghammer, and C. Riekel: Scanning x-ray microdiffraction of optically manipulated liposomes. Appl. Phys. Lett. 91, 234107, 2007.
  • [3] S. J. van Enk, J. McKeever, H. J. Kimble, and J. Ye: Cooling of a single atom in an optical trap inside a resonator. Phys. Rev. A64, 013407, 2001.
  • [4] N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett: Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52-54, 1997.
  • [5] Q. Wang, X. W. Sun, and P. Shum: Generating doughnut-shaped beams with large charge numbers by use of liquid-crystal spiral phase plates. Appl. Opt. 43, 2292-2297, 2004.
  • [6] M. Mihailescu, A. M. Preda, D. Cojoc, E. I. Scarlat, and L. Preda: Diffraction pattern from a phyllotaxis type arrangement. Optic. Laser Eng. 46, 802-809, 2008.
  • [7] J. W. Goodman, Introduction to Fourier Optics, Mc Graw-Hill Book Company, 1968.
  • [8] M. Mihailescu, A. M. Preda, D. Cojoc, E. I. Scarlat, L. Preda, and I. M. Popescu: Intensity redistribution in diffractive pat tern due to fractal phase changes. J. Optoelectron. Adv. M. 9, 2485-2491, 2007.
  • [9] D. C. O'shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics, SPIE Press, Bellingham, 2004.
  • [10] Holoeye Photonics AG, LC 2002 Translucent SVGA Spatial Light Modulator - Data Sheet.
  • [11] A. Marquez, J. Campos, M. J. Yzuel, I. Moreno, J.A. Davis, C. Iemmi, A. Moreno, and A. Robert: Characterization of edge effects in twisted nematic liquid crystals display. Opt. Eng. 39, 301-3307, 2000.
  • [12] J. Garcia, D. Mas, and R.G. Dorsch: Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Appl. Opt. 35, 7013-7018, 1996.
  • [13] B. Hou, G. Xu, W. Wen, G. K. L. Wong: Diffraction by an optical fractal grating. Appl. Phys. Lett. 85, 6125-6127, 2004.
  • [14] L. Zunino and M. Garavaglia: Fraunhofer diffraction by Cantor fractals with variable lacunarity. J. Mod. Optic. 50, 717-727, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0016-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.