PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Basic features of a charged particle dynamics in a laser beam with static axial magnetic field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the trajectory and kinetic energy of a charged particle, subjected to interaction from a laser beam containing an additionally applied external static axial magnetic field, have been analyzed. We give the rigorous analytical solutions of the dynamic equations. The obtained analytical solutions have been verified by performing calculations using the derived solutions and the well known Runge-Kutta procedure for solving original dynamic equations. Both methods gave the same results. The simulation results have been obtained and presented in graphical form using the derived solutions. Apart from the laser beam, we show the results for a maser beam. The obtained analytical solutions enabled us to perform a quantitative illustration, in a graphical form of the impact of many parameters on the shape, dimensions and the motion direction along a trajectory. The kinetic energy of electrons has also been studied and the energy oscillations in time with a period equal to the one of a particle rotation have been found. We show the appearance of, so-called, stationary trajectories (hypocycloid or epicycloid) which are the projections of the real trajectory onto the (x, y) plane. Increase in laser or maser beam intensity results in the increase in particle's trajectory dimension which was found to be proportional to the amplitude of the electric field of the electromagnetic wave. However, external magnetic field increases the results in shrinking of the trajectories. Performed studies show that not only amplitude of the electric field but also the static axial magnetic field plays a crucial role in the acceleration process of a charged particle. At the authors of this paper best knowledge, the precise analytical solutions and theoretical analysis of the trajectories and energy gains by the charged particles accelerated in the laser beam and magnetic field are lacking in up to date publications. The authors have an intention to clarify partly some important aspects connected with this process. The presented theoretical studies apply for arbitrary charged particle and the attached figures-for electrons only.
Twórcy
autor
  • Pedagogical Department, K. Pułaski Technical University of Radom, 20A Malczewskiego Str., 26-600 Radom, Poland
  • Pedagogical Department, K. Pułaski Technical University of Radom, 20A Malczewskiego Str., 26-600 Radom, Poland
Bibliografia
  • [1] E. Esarey, P. Sprangle, J. Krall, and A. Ting: Overview of plasma-based accelerator concepts. IEEE T. Plasma Sci. 24, 252-288, 1996.; H. Spohn: Dynamics of charged particles and their radiation field. http://arxiv.org/PS_cache/mathph/pdf/9908/9908024v1.pdf; R. Schutzhold, G. Schaller, and D. Habs: Signatures of the Unruh effect from electrons accelerated by ultra-strong laser fields. http://arxiv.org/PS_cache/quant-ph/pdf/0604/0604065v1.pdf, A. P. L. Robinson, D. Neely, P. McKenna, and R. G. Evans: Spectral control in proton acceleration with multiple laser pulses. Plasma Phys. Contr. F. 49, 373-384, 2007.
  • [2] A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh: Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606-608, 1995.
  • [3] P. Chen: Grand disruption: A possible final focusing mechanism for linear colliders. Part. Accel. 20, 171-179, 1987.
  • [4] T. Tajima and J. M. Dawson: Laser electron accelerator. Phys. Rev. Lett. 43, 267-270, 1979.; Y. I. Salamin and C. H. Keitel: Analysis of electron acceleration in a vacuum beat wave. J. Phys. B-At. Mol. Opt. 33, 5057-5076, 2000.; D. N. Gupta, K. P. Singh, and H. Suk: Influence of electromagnetic oscillating two-stream instability on the evolution of laser driven plasma beat wave. Phys. Plasmas 14, 01310-1-01310-5, 2007.
  • [5] L. M. Gorbunov and V.I. Kirsanov: Excitation of plasma waves by an electromagnetic wave packed. Zh. Eksp. Teor. Fiz. 93, 509-513, 1987.; H. Roh, M. S. Hur, and H. J. Lee: Investigation of the optimal condition for high acceleration efficiency in the laser wake-field acceleration. J. Korean Phys. Soc. 52, 293-303, 2008.
  • [6] D. Umstadter, E. Esarey, and J. Kim: Nonlinear plasma waves resonantly driven by optimized laser pulse trains. Phys. Rev. Lett. 72, 1224-1227, 1994 .
  • [7] P. Sprangle, E. Esarey, J. Krall, and G. Joyce: Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 2200-2203, 1992.; A. Ogata and K. Nakajama: Recent progress and perspectives of laser-plasma accelerators. Laser Part. Beams 16, 381-396, 1998.
  • [8] T. M. Antonsen, Jr. and P. Mora: Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 2204-2207, 1992.
  • [9] N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov, A. Pogosova, and R. R. Ramazashvili: Resonant excitation of wakefields by a laser pulse in a plasma. Pisma Zh. Eksp. Teor. Fiz. 55, 551-555, 1992.
  • [10] E. Esarey, P. Sprangle, J. Krall, and A. Ting: Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Elect. 33, 1879-1914, 1997.
  • [11] H. Hora: Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337-338, 1988.
  • [12] F. V. Hartemann, J. R. Van Meter, A. L. Troha, E. C. Landahl, N. C. Luhmann, Jr., H. A. Baldis, A. Gupta, and A. K. Kerman: Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E58, 5001-5012, 1998.
  • [13] G. V. Stupakov and M. S. Zolotorev: Ponderomotive laser acceleration and focusing in vacuum for generation of atto-second electron bunches. Phys. Rev. Lett. 86, 5274-5277, 2001.
  • [14] D. Umstadter: Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 1774-1785, 2001.
  • [15] J. J. Xu, Q. Kong, Z. Chen, P. X. Wang, D. Lin, and Y. K. Ho: Vacuum laser acceleration in circularly polarized fields. J. Phys. D: Appl. Phys. 40, 2464-2471, 2007.
  • [16] D. N. Gupta and H. Suk: Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 31-36, 2007.
  • [17] V. H. Mellado, S. Hacyan, and R. Jauregui: Trapping and acceleration of charged particles in Bessel beams. Laser Part. Beams 24, 559-566, 2006.
  • [18] K. Koyama, M. Adachi, E. Miura, S. Kato, S. Masuda, T. Watanabe, A. Ogata, and M. Tanimoto: Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95-100, 2006.
  • [19] A. Kumar, M. K. Gupta, and R. P. Sharma: Electron acceleration to GeV energy by a radially polarized laser. Laser Part. Beams 24, 403-409, 2006.
  • [20] W. Żakowicz: Whispering-gallery-mode resonances: a new way to accelerate charged particles. Phys. Rev. Lett. 95, 114801-115000, 2005.; Phys. Rev. Lett. 97, 109901(E), 2006.
  • [21] W. Żakowicz: Particle acceleration by wave scattering off dielectric spheres at whispering-gallery-mode resonance. Phys. Rev. Spec. Top-Ac. 10, 101301-1-101301-9, 2007.
  • [22] H. Liu, X. T. He, and H. Hora: Additional acceleration and collimation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction. Appl. Phys. B82, 93-97 (2006); H. Y. Niu, X. T. He, B. Qiao, and C. T. Zhou: Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 51-59 (2008);: Pulsed magnets. http://www.lanl.gov/mst/nhmfl/magnets.shtml.
  • [23] D. N. Gupta and C. M. Ryu: Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas 12, 053103-1-053103-5, 2005.
  • [24] C. Gahn, G. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K.J. Witte: Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772-4775, 1999.
  • [25] G. D. Tsakiris, C. Gahn, and V. K. Tripathi: Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7, 3017-3030, 2000.
  • [26] G. Zeng: Energy gain of injected electrons subjected to an intense laser field and its magnetic field induced in plasma. Phys. Rev. E60, 5950-5958, 1999.
  • [27] I. Yu. Kostyukov, G. Shvets, N. J. Fish, and J. M. Rax: Magnetic-field generation and electron acceleration in relativistic laser channel. Phys. Plasmas 9, 636-648, 2002.
  • [28] K. P. Singh: Electron acceleration by a circularly polarized laser pulse in a plasma. Phys. Plasmas 11, 3992-3995, 2004.
  • [29] P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, L. Shao, A. M. Sessler, E. Esarey, E. Moshkovich, Y. Nishida, N. Yugami, H. Ito, J. X. Wang, and S. Scheid: Characteristics of laser-driven electron acceleration in vacuum. J. Appl. Phys. 91, 856-866, 2002.
  • [30] A. Loeb and L. Friedland: Autoresonance laser accelerator. Phys. Rev. A33, 1828-1835, 1986.; A. Loeb, L. Friedland, and S. Eliezer: Autoresonance laser acceleration of guided quasineutral electron-positron beams. Phys. Rev. A35, 1692-1696, 1987.; Y. I. Salamin and F. H. M. Faisal: Relativistic free-electron dynamics and light-emission spectra in the simultaneous presence of a super-intense laser field and a strong uniform magnetic field. Phys. Rev. A58, 3221-3234, 1998.; Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel: Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance. Phys. Rev. A62, 053809-1-053809-15, 2000.; X. He, B. Shuai, X. C. Ge, R. X. Li, and Z. Z. Hu: Phase dependence of relativistic electron dynamics and emission spectra in the superposition of an ultra-intense laser field and a strong uniform magnetic field. http://epsppd.epfl.ch/London/pdf/P4_023.pdf.
  • [31] K. P. Singh: Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum. J. Appl. Phys. 100, 044907-1-044907-4, 2006.
  • [32] Y. I. Salamin: Electron acceleration from rest in vacuum by an axicon Gaussian laser beam. Phys. Rev. A73, 043402-1-043402-6, 2006.
  • [33] Y. I. Salamin and C. H. Keitel: Electron acceleration by a tightly focused laser beam. Phys. Rev. Lett. 88, 095005-1-095005-4, 2002.
  • [34] J. L. Hirshfield and C. Wang: Laser-driven electron cyclotron autoresonance accelerator with production of an optically chopped electron beam. Phys. Rev. E61, 7252-7255, 2000.
  • [35] M. Bodendorfer, K. Altwegg, H. Shea, and P. Wurz: Field structure and electron life times in the MEFISTO electron cyclotron resonance ion source. http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.0092v1.pdf; M. Thumm: State-of-theart of high power gyro-devices and free electron masers. http://bibliothek.fzk.de/zb/berichte/FZKA7289.pdf;: Planar free electron maser and non-linear effects. http://www.istc.ru/ISTC/sc.nsf/html/projects.htm-open&id=2209.
  • [36] Y. I. Salamin: Single-electron dynamics in a tightly focused laser beat wave: acceleration in vacuum. J. Phys. B: At. Mol. Opt. Phys. 38, 4095-4110, 2005.
  • [37] A. Dubik, Movement of Charged Particles in Electromagnetic Fields, Monograph No 101, Published at Radom University of Technology, Radom, 2007. (in Polish)
  • [38] B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe: Modelling astrophysical phenomena in the laboratory with intense lasers. Science 284, 1488-1493, 1999. http://arxiv.org/PS_cache/quant-ph/pdf/0604/0604065v1.pdf.
  • [39] P. Baum and A. H. Zewail: Attosecond electron pulses for 4D diffraction and microscopy. PNAS 104, 18409-18414, 2007.
  • [40] J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S.W. Haan, R.L. Kauffman, O. L. Landen, and L. J. Suter: The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339-491, 2004.
  • [41] K. W. D. Ledingham, P. McKenna, and R. P. Singhal: Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 1107-1111, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0016-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.