PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Double-frequency external cavity laser with a singular optical semiconductor amplifier

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical properties of an external cavity laser with a semiconductor optical amplifier and two diffraction gratings are described. The laser has been pigtailed and its emission showed two peaks in the output spectrum. The wavelength of the peaks, and in particular the spectral spacing between them, could be controlled by adjusting the reflecting elements in the system. The proposed double-frequency laser may be adopted as a signal source in terahertz generators.
Twórcy
autor
autor
autor
  • Institute of Electron Technology, 32/46 Lotników Ave., 02-668 Warsaw, Poland
Bibliografia
  • [1] R. Stevenson: III-Vs squeeze the terahertz gap. Compound Semicond. 14, 1-19, 2008.
  • [2] C. Bolognesi: Antimonides chase terahertz target. Compound Semicond. 14, 21-23, 2008.
  • [3] Y. Jiang and Y. J. Ding: Efficient terahertz generation from two collinearly propagating CO2 laser pulses. Appl. Phys. Lett. 91, 091108-1-3, 2007.
  • [4] C. Walther, M. Fisher, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist: Quantum cascade laser operating from 1.2 to 1.6 Thz. Appl. Phys. Lett. 91, 131122-1-3, 2007.
  • [5] M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner: Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nature Photonics 1, 288-292, 2007.
  • [6] N. Chimot, J. Mangeney, P. Mounaix, M. Tondusson, K. Blary, and J. F. Lampin: Teraherz radiation generated and detected by Br+-irradiated In0.53Ga0.47As photoconductive antenna excited at 800-nm wavelength. Appl. Phys. Lett. 89, 0833519-1-3, 2006.
  • [7] E. R. Brown, J. Bjamarson, T. L. J. Chan, D. C. Driscoll, M. Hanson, and A. C. Gossard: Room temperature, THz photomixing swep oscillator and its application to spectroscopic transmission though organic materials. Rev. Sci. Instrum. 75, 5333-5342, 2004.
  • [8] A. Deninger and T. Renner: Terahertz generation benefits from laser know-how. Opt. Laser Europe 6, 40-42, 2007.
  • [9] C. S. Friedrich, C. Brenner, S. Hoffman, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M.R. Hofmann: New two-colour laser concepts for THz generation. IEEE J. Sel. Top. Quant. 14, 270-276, 2008.
  • [10] B. Mroziewicz: External cavity wavelength tunable semi-conductor lasers - a review. Opto-Electron. Rev. 16, 347-366, 2008.
  • [11] M. Asghari, B. Zhu, I. H. White, C. P. Seltzer, C. Nice, I. D. Henning, A. L. Burness, and G.H.B. Thompson: Demonstration of an integrated multichannel grating cavity laser for WDM applications. Electron. Lett. 30, 1674-1675, 1994.
  • [12] B. Mroziewicz, E. Kowalczyk, L. Dobrzanski, J. Ratajczak, and S. J. Lewandowski: External cavity diode lasers with E-beam written silicon diffraction gratings. Opt. Quant. Electron. 39, 585-595, 2007.
  • [13] T. W. Hansch: Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Optics 11, 895-898, 1972.
  • [14] M. G. Littman: Single-mode operation of grazing-incidence pulsed dye laser. Optics Lett. 3, 138-140, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0016-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.