Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work presents the new opportunity for making semantic descriptions and analysis of medical structures, especially coronary vessels CT spatial reconstructions, with the use of AI graph-based linguistic formalisms. In the paper there will be discussed the manners of applying methods of computational intelligence to the development of a syntactic semantic description of spatial visualisations of the heart's coronary vessels. Such descriptions may be used for both smart ordering of images while archiving them and for their semantic searches in medical multimedia databases. Presented methodology of analysis can furthermore be used for attaining other goals related performance of computer-assisted semantic interpretation of selected elements and/or the entire 3D structure of the coronary vascular tree. These goals are achieved through the use of graph-based image formalisms based on IE graphs generating grammars that allow discovering and automatic semantic interpretation of irregularities visualised on the images obtained during diagnostic examinations of the heart muscle. The basis for the construction of 3D reconstructions of biological objects used in this work are visualisations obtained from helical CT scans, yet the method itself may be applied also for other methods of medical 3D images acquisition. The obtained semantic information makes it possible to make a description of the structure focused on the semantics of various morphological forms of the visualised vessels from the point of view of the operation of coronary circulation and the blood supply of the heart muscle. Thanks to these, the analysis conducted allows fast and - to a great degree - automated interpretation of the semantics of various morphological changes in the coronary vascular tree, and especially makes it possible to detect these stenoses in the lumen of the vessels that can cause critical decrease in blood supply to extensive or especially important fragments of the heart muscle.
Wydawca
Czasopismo
Rocznik
Tom
Strony
200--210
Opis fizyczny
Bibliogr. 20 poz., wykr., il.
Twórcy
autor
autor
autor
- Institute of Automatics, Bio-Cybernetics Laboratory, AGH University of Science and Technology, 30 Mickiewicza Ave, 30-059 Cracow, Poland, mogiela@agh.edu.pl
Bibliografia
- [1]. R. Tadeusiewicz and M. R. Ogiela, Medical Image Understanding Technology, Springer Verlag, Berlin-Heidelberg, 2004.
- [2] M. R. Ogiela and R. Tadeusiewicz: Nonlinear processing and semantic content analysis in medical imaging - a cognitive approach. IEEE T. Instrum. Meas. 54, 2149-2155, 2005.
- [3] M. R. Ogiela and R. Tadeusiewicz, Modern Computational Intelligence Methods for the Interpretation of Medical Images, Springer-Verlag, Berlin Heidelberg, 2008.
- [4] Meyer-Baese, Pattern Recognition in Medical Imaging, Elsevier-Academic Press, San-Diego, 2003.
- [5] M. Skomorowski: A syntactic-statistical approach to recognition of distorted patterns. Jagiellonian University, Cracow, 2000.
- [6] R. Tadeusiewicz and M. Flasiński, Pattern Recognition, Warsaw, 1991.
- [7] L. Ferrarini, H. Olofsen, W. M. Palm, M. A. van Buchem, J. H. C. Reiber, and F. Admiraal-Behloul: GAMEs: Growing and adaptive meshes for fully automatic shape modeling and analysis. Med. Image Anal. 11, 302-314, 2007.
- [8] M. R. Ogiela, R. Tadeusiewicz, and L. Ogiela: Graph image language techniques supporting radiological, hand image interpretations. Comput. Vis. Image Und. 103, 112-120, 2006.
- [9] D. Seghers, D. Loeckx, F. Maes, D. Vandermeulen, and P. Suetens: Minimal shape and intensity cost path segmentation. IEEE T. Med. Imaging 26, 1115-1129, 2007.
- [10] D. Loeckx, F. Maes, D. Vandermeulen, and P. Suetens: Temporal subtraction of thorax CR images using a statistical deformation model. IEEE T. Med. Imaging 22, 1490-1504, 2003.
- [11] M. Ferencik, R. C. Chan, S. Achenbach, J. B. Lisauskas, S. L. Houser, U. Hoffman, S. Abbara, R. C. Cury, B. E. Bouma, G. J. Tearney, and T. J. Brady: Arterial wall imaging: Evaluation with 16-section multidetector CT in blood vessel phantoms and ex vivo coronary arteries. Radiology 240, 708-716, 2006.
- [12] P. S. Wild and R. J. Zotz: Fragment reconstruction of coronary arteries by transesophageal echocardiography - A method for visualizing coronary arteries with ultrasound. Circulation 105, 1579-1584, 2002.
- [13] A. M. Taylor, S. A. Thorne, M. B. Rubens, P. Jhooti, J. Keegan, P. D. Gatehouse, F. Wiesmann, F. Grothues, J. Somerville, and D. J. Pennell: Coronary artery imaging in grown up congenital heart disease - Complementary role of magnetic resonance and X-ray coronary angiography. Circulation 101, 1670-1678, 2000.
- [14] M. G. Khan, Heart Disease Diagnosis and Therapy, Williams & Wilkins, Baltimore, 1996.
- [15] F. H. Netter and S. Colacino, Atlas of Human Anatomy, Novartis Medical Education, 1998.
- [16] W. E. Higgins and J. M. Reinhardt: Cardiac image processing. Pp. 789-804, in Handbook of Video and Image Processing, edited by A. Bovik, Academic Press, San-Diego, 2000.
- [17] J. Butler, M. Shapiro, J. Reiber, T. Sheth, J. Reiber, M. Shapiro, M. Ferencik, E. Kurtz, J. Nichols, A. Pena, R. Cury, T. Brady, and U. Hoffmann: Extent and distribution of coronary artery disease: A comparative study of invasive versus noninvasive angiography with computed angiography. Am. Heart J. 153, 378-384, 2007.
- [18] K. R. Hoffman, A. Sen, and L. Lan: A system for determination of 3D vessel tree centerlines from biplane images. Int. J. Cardiac Imag. 16, 315-330, 2000.
- [19] Handbook of Medical Imaging: Processing and Analysis, edited by Bankman, Academic Press, San-Diego, 2002.
- [20] W. E. Higgins, R. A. Karwoski, E. L. Ritman, and W. J. Spyra: System for analyzing true three-dimensional angiograms. IEEE T. Med. Imaging 15, 377-385, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0016-0045