PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of fields and anchoring on biaxial nematic ordering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Symmetry of a nematic liquid crystal phase is broken by an anchoring wall and also by an external field. Nematic system sandwiched between biaxial anchoring walls is introduced as a correspondent to a bulk nematic system exposed to a couple of fields, an electric field and a magnetic one in directions perpendicular to each other, and thermal behaviours of the system are studied. The crossover between a homeotropic structure and homogeneous one occurs, similarly to the bulk system in the fields, in which the anchoring condition of coexistence is shown to have the same expression as the one at the bulk. As to a characteristic phenomenon at the sandwiched system, it is proved that an appearance of a biaxial nematic order suppresses a uniaxial nematic order. A surface transition, i.e., a wetting phenomenon is shown to occur also in the biaxial nematics, even though the uniaxial order is suppressed therein.
Twórcy
autor
autor
autor
  • Department of Physics Engineering, Mie University, Kurimamachiya 1577, Tsu 514-8507, Japan
Bibliografia
  • [1] P. G. de Gennes and J. Prost: The Physics of Liquid Crystals. 2nd ed., Clarendon Press, Oxford, 1993.
  • [2] M. J. Freiser: Ordered states of a nematic liquid. Phys. Rev. Lett. 24, 1041-1043, 1970.
  • [3] J. P. Straley: Ordered phases of a liquid of biaxial particles. Phys. Rev. A10, 1881-1887, 1974.
  • [4] G. R. Luckhurst and S. Romano: Computer-simulation studies of anisotropic systems. 2. Uniaxial and biaxial nematics formed by non-cylindrically symmetric molecules: Mol. Phys. 40, 129-139, 1980.
  • [5] D. W. Allender and M. A. Lee: Landau theory of biaxial nematic liquid crystals. Mol. Cryst. Liq. Cryst. 110, 331-339, 1984.
  • [6] F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, and C. Zannoni: Phase diagram and orientational order in a biaxial lattice model: A Monte Carlo study. Phys. Rev. Lett. 75, 1803-1806, 1995.
  • [7] L. A. Madsen, T. J. Dinemans, M. Nakata, and E. T. Samulski: Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92, 145505, 2004.
  • [8] C. Fan and M. J. Stephen: Isotropic-nematic phase transition in liquid crystals. Phys. Rev. Lett. 25, 500-503, 1970.
  • [9] M. Yamashita: Global phase diagram of Maier-Saupe model and inhomogeneity due to walls. J. Phys. Soc. Jpn. 72, 1682-1688, 2003.
  • [10] M. Yasen, M. Torikai, and M. Yamashita: Change of order of nematic phase transition in uniaxially anchored systems. Mol. Cryst. Liq. Cryst. 438, 77-90, 2005.
  • [11] M. Yamashita and M. Torikai: Symmetry of nematic phase and oblique axial order. J. Phys. Soc. Jpn. 75, 104601, 2006.
  • [12] P. Sheng: Boundary-layer phase transition in nematic liquid crystals. Phys. Rev. A26, 1610-1617, 1982.
  • [13] Y. L'vov, R. M. Hornreich, and D. W. Allender: Theory of a symmetry-breaking phase transition in a surface layer of nematic liquid crystal. Phys. Rev. E48, 1115-1122, 1993.
  • [14] N. Kotherkar, D. W. Allender, and R. M. Hornreich: Surface-layer phase transitions in nematic liquid crystals. Phys. Rev. E49, 2150-2154, 1994.
  • [15] M. M. Wittebrood, T. Rasing, S. Stallinga, and I. Musevic: Confinement effects on the collective excitations in thin nematic films. Phys. Rev. Lett. 80, 1232-1235, 1998.
  • [16] A. Sarlah and S. Zumer: Equilibrium structures and pretransitional fluctuations in a very thin hybrid nematic film. Phys. Rev. E60, 1821-1830, 1999.
  • [17] I. Rodriguez-Ponce, J. M. Romero-Enrique, and L. F. Rull: Orientational transitions in a nematic liquid crystal confined by competing surfaces. Phys. Rev. E64, 051704, 2001.
  • [18] M. Ito, M. Torikai, and M. Yamashita: Biaxial field and crossover between homeotropic and homogeneous structures in the system anchored by biaxial walls. Mol. Cryst. Liq. Cryst. 441, 69-85, 2005.
  • [19] M. Torikai and M. Yamashita: Similarity and dissimilarity between Influences of anchoring walls and external fields on nematic and smectic A phases. Mol. Cryst. Liq. Cryst. 441, 59-67, 2005.
  • [20] W. Maier and A. Saupe: Eine Einfache Molekulare Theorie des Nematischen Kristallinflussigen Zustandes. Z. Naturforsch. 13a, 564-566, 1958. (in German)
  • [21] W. Maier and A. Saupe: Eine Einfache Molekular-Statistische Theorie der Nematischen Kristallinflussigen Phase 1. Z. Naturforsch. 14a, 882-889, 1959. (in German)
  • [22] H. Yokoyama: Nematic isotropic transition in bounded thin-films. J. Chem. Soc. Faraday Trans. 84, 1023-1040, 1988.
  • [23] T. Kio, M. Torikai, and M. Yamashita: Molecular theoretic study of Freedericksz transition - Symmetry breaking of oblique axial order. Opto-Electron. Rev. 17, 8-15, 2009.
  • [24] W. M. Gibbons, P. J. Shannon, S. Sun, and B. J. Swetlin: Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature 351, 49-50, 1991.
  • [25] D. H. Chung, Y. Takanishi, K. Ishikawa, C. Y. Yu, S. D. Lee, and H. Takezoe: Alignment control of a nematic liquid crystal on a doubly treated substrate. Jpn. J. Appl. Phys. 42, 1686-1689, 2003.
  • [26] Z. Huang and C. Rosenblatt: Large polar pretilt for the liquid crystal homologous series alkylcyanobiphenyl. Appl. Phys. Lett. 86, 011908, 2005.
  • [27] G. Carbone and C. Rosenblatt: Polar anchoring strength of a tilted nematic: Confirmation of the dual easy axis model. Phys. Rev. Lett. 94, 057802, 2005.
  • [28] M. Honma and T. Nose: Polarization-independent liquid crystal grating fabricated by microrubbing process. Jpn. J. Appl. Phys. 42, 6992-6997, 2003.
  • [29] M. Honma, K. Hirata, and T. Nose: Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells. Appl. Phys. Lett. 88, 033513, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0016-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.