PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Molecular theoretic study of Freedericksz transition : symmetry breaking of oblique axial order

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Freedericksz transition, which is usually analyzed by an elastic theory, is studied on the basis of statistical mechanical ground, where nematics with positive dielectric anisotropy in homogeneous anchoring cell is exposed to an electric field in the direction of wall normal. In low temperature region, an oblique axial symmetry breaking occurs, which is nothing but the Freedericksz transition. In high temperature and high field region, biaxial nematic phase with principal axis parallel to the field direction at interior area of the system is proved to appear. A phase diagram on the field versus temperature plane is obtained and compared with the one at a bulk with common biaxial symmetry, where both of electric and magnetic fields are applied in directions perpendicular to each other. In the latter, no symmetry breaking occurs, in contrast with the former case above-mentioned, and the reason why this difference occurs is elucidated.
Twórcy
autor
autor
autor
  • Department of Physics Engineering, Mie University, 1577 Kurimamachiya Str., Tsu 514-8507, Japan
Bibliografia
  • [1] P.G. de Gennes and J. Prost: The Physics of Liquid Crystals. 2nd ed., Clarendon Press, Oxford, 1993.
  • [2] J. Hanus: Effect of the molecular interaction between anisotropic molecules on the optic Kerr effect. Field-induced phase transition. Phys. Rev. 178, 420-428, 1969.
  • [3] P.J. Wojtowicz and P. Sheng: Critical point in the magnetic field-temperature phase diagram of nematic liquid crystals. Phys. Lett. A48, 235-236, 1974.
  • [4] M. Yamashita: Global phase diagram of Maier-Saupe model and inhomogeneity due to walls. J. Phys. Soc. Jpn. 72, 1682-1688, 2003.
  • [5] P. Sheng: Phase transition in surface-aligned nematic films. Phys. Rev. Lett. 37, 1059-1062, 1976.
  • [6] P. Sheng: Boundary-layer phase transition in nematic liquid crystals. Phys. Rev. A26, 1610-1617, 1982.
  • [7] H. Yokoyama: Nematic isotropic transition in bounded thin-films. J. Chem. Soc. Farad. T. 84, 1023-1040, 1988.
  • [8] M. Yasen, M. Torikai, and M. Yamashita: Nematic ordering of a liquid crystalline homeotropic cell. J. Phys. Soc. Jpn. 73, 2453-2457, 2004.
  • [9] C. Fan and M.J. Stephen: Isotropic-nematic phase transition in liquid crystals. Phys. Rev. Lett. 25, 500-503, 1970.
  • [10] M. Yasen, M. Torikai, and M. Yamashita: Change of order of nematic phase transition in uniaxially anchored systems. Mol. Cryst. Liq. Cryst. 438, 77-90, 2005.
  • [11] M. Yamashita and M. Torikai: Symmetry of nematic phase and oblique axial order. J. Phys. Soc. Jpn. 75, 104601, 2006.
  • [12] M.J. Freiser: Ordered states of a nematic liquid. Phys. Rev. Lett. 24, 1041-1043, 1970.
  • [13] J.P. Straley: Ordered phases of a liquid of biaxial particles. Phys. Rev. A10, 1881-1887, 1974.
  • [14] G.R. Luckhurst and S. Romano: Computer-simulation studies of anisotropic systems. 2. Uniaxial and biaxial nematics formed by non-cylindrically symmetric molecules. Mol. Phys. 40, 129-139, 1980.
  • [15] D.W. Allender and M.A. Lee: Landau theory of biaxial nematic liquid crystals. Mol. Cryst. Liq. Cryst. 110, 331-339, 1984.
  • [16] F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, and C. Zannoni: Phase diagram and orientational order in a biaxial lattice model: A Monte Carlo study. Phys. Rev. Lett. 75, 1803-1806, 1995.
  • [17] L.A. Madsen, T.J. Dinemans, M. Nakata, and E.T. Samulski: Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92, 145505, 2004.
  • [18] Y. L'vov, R.M. Hornreich, and D.W. Allender: Theory of a symmetry-breaking phase transition in a surface layer of nematic liquid crystal. Phys. Rev. E48, 1115-1122, 1993.
  • [19] N. Kotherkar, D.W. Allender, and R.M. Hornreich: Surface-layer phase transitions in nematic liquid crystals. Phys. Rev. E49, 2150-2154, 1994.
  • [20] M.M. Wittebrood, T. Rasing, S. Stallinga, and I. Musevic: Confinement effects on the collective excitations in thin nematic films. Phys. Rev. Lett. 80, 1232-1235, 1998.
  • [21] A. Sarlah and S. Zumer: Equilibrium structures and pretransitional fluctuations in a very thin hybrid nematic film. Phys. Rev. E60, 1821-1830, 1999.
  • [22] I. Rodriguez-Ponce, J.M. Romero-Enrique, and L.F. Rull: Orientational transitions in a nematic liquid crystal confined by competing surfaces. Phys. Rev. E64, 051704, 2001.
  • [23] M. Ito, M. Torikai, and M. Yamashita: Biaxial field and crossover between homeotropic and homogeneous structures in the system anchored by biaxial walls. Mol. Cryst. Liq. Cryst. 441, 69-85, 2005.
  • [24] W. Maier and A. Saupe: Eine Einfache Molekulare Theorie des Nematischen Kristallinflussigen Zustandes. Z. Naturforsch. 13A, 564-566, 1958.
  • [25] W. Maier and A. Saupe: Eine Einfache Molekular-Statistische Theorie der Nematischen Kristallinflussigen Phase, I. Z. Naturforsch. 14A, 882-889, 1959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0016-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.