PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of an Array of Duffing Oscillators Suspended on Elastic Etructures

Identyfikatory
Warianty tytułu
Konferencja
Polish-German Workshop on Dynamical Problems of Mechanical Systems (10 ; 3-7.09.2007 ; Goslar, Germany)
Języki publikacji
EN
Abstrakty
EN
We consider the dynamics of externally excited chaotic oscillators suspended on the elastic structure. We show that for the given conditions of oscillations of the structure, initially uncorrelated chaotic oscillators become periodic and synchronous. In the periodic regime we observed synchronized clusters and multistability as different attractors coexist.
Rocznik
Strony
57--65
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
Bibliografia
  • Blekhman, I.I., 1998, Synchronization in science and technology, ASME, New York.
  • Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., and Zhou, C.S., 2002, The synchronization of chaotic systems, Physics Reports, 366, 1.
  • Chen, G. (ed.), 1999, Controlling Chaos and Bifurcations, CRC Press, Boca Raton.
  • Czolczynski, K., Kapitaniak, T., Perlikowski, P., and Stefanski, A., 2007a, Penodization of Duffing oscillators suspended on elastic structure: mechanical explanation, Chaos Solitons and Fractals, 32, 920-926.
  • Czolczynski, K., Perlikowski, P., Stefanski, A. and Kapitaniak, T., 2007b, Synchronization of self-excited oscillators suspended on elastic structure, Chaos Solitons and Fractals, 32, 937-943.
  • Czolczynski, K., Perlikowski, P., Stefanski, A. and Kapitaniak, T., 2007C, Dynamics of n coupled oscillators suspended on elastic structure, (in preparation).
  • Dowell, E., Pezeshki, C, 1986, On the understanding of chaos in Duffing's equation including a comparison with experiment, Journal of Applied Mechanics, 53, 229.
  • Fertis, D.G., 1996, Advanced Mechanics of Structures, CRC Press, Akron.
  • Feudel, U., Grebogi, C, Hunt, B. R., and Yorke, J.A., 1996, Physical Review E54, 71-81.
  • Hugenii, C., 1673, Horoloqium Oscilatorium, Apud F. Muquet, Parisiis; English translation: The pendulum clock, Iowa State University Press, Ames, 1986.
  • Kaneko, K., 1997, Dominance of milnor attractors and noise-induced selection in a multiattractor systems, Physical Review Letters, 78, 2736-2739.
  • Kapitaniak, T., 1996, Controlling Chaos, Academic Press, London.
  • Kraut, S., Feudel, U,, 2002, Multistability, noise, and attractor hopping: The crucial role of chaotic saddles, Physical Review, E66, 015207(1-4).
  • Liu, Y.-H., Xu, Y., and Bergerman, M., 1999, Cooperation control of multiple manipulators with passive joints, IEEE Trans. Robotics Autom, 15, 258-267.
  • Pecora, L., Carroll, T.S., 1990, Physical Review Letters, 64, 821-824.
  • Pikovsky, A., Rosenblum, M., and Kurths, J., 2001, Synchronization: A universal Concept in Nonlinear Science, Cambridge University Press, Cambridge.
  • Pogromsky, A. Yu., Belykh, V.N., and Nijmeijer, H., 2003, Controlled synchronization of pendula, Proceedings of the 42nd IEEE Conference on Design and Control, Maui, Hawaii, 4381-4385.
  • Rodrigues-Angeles, A., and Nijmeijer, H., 2001, Coordination of two robor manipulators based on position measurements only, Int. J. Control, 74, 1311-1321.
  • Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York, Berlin, Heidelberg.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0010-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.