

Aleksander GÓRNIAK, Ryszard MICHAŁOWSKI, Marcin TKACZYK

SYMULACJE UKŁADU DOLOTOWEGO SILNIKA ZASILANEGO CNG

Streszczenie

W artykule zamieszczono treści dotyczące możliwości zastosowania alternatywnego paliwa Compresible Natural Gas do silników spalinowych stosowanych w autobusach, ciężkim transporcie górniczym oraz samochodach ciężarowych. Przedstawiono jeden z wymienionych pojazdów wraz z silnikiem oraz szczegółowo scharakteryzowano sposób postępowania podczas symulacji mającej na celu określenie jakości stosowanych instalacji CNG. Prace sprowadzono do określenia pól stężeń substratów w mieszaninie zasilającej cylindry silnika spalinowego. Analizując stężenia substratów, określono nieprawidłowości w funkcjonowaniu instalacji CNG oraz konsekwencje dla silnika spalinowego.

WSTĘP

Tłokowy silnik spalinowy jest to maszyna cieplna (termodynamiczna), w której energia chemiczna paliwa jest zamieniana na energię cieplną a ta z kolei na energię mechaniczną.

Uzyskanie jak najlepszych wskaźników pracy silnika spalinowego skupiało uwagę konstruktorów od pierwszych lat jego powstania. Początkowo wyrażało się to dążeniem do zwiększenia mocy i sprawności ogólnej silnika. W miarę upływu czasu dążenia te stały się bardziej wyrafinowane i dotyczyły większej liczby parametrów roboczych silnika. Podstawowym problemem pozostała jednak poprawa napełnienia cylindra czynnikiem roboczym [8].

Układ dolotowy odgrywa istotną rolę w procesie napełnienia cylindra. Dlatego też podejmowano próby obliczeniowego ujęcia procesu napełnienia cylindra silnika spalinowego realizowane poprzez opis zjawisk w układach dolotowych. Wszystkie próby obliczeniowego ujęcia procesu napełnienia silnika spalinowego opierające się na założeniach upraszczających, cechowały się niską zgodnością z wynikami weryfikacji praktycznych. Skomplikowany charakter równań zasad zachowania masy, energii i pędu przeszkadzał w uzyskaniu poprawnych wyników obliczeniowych [7]. Jednak rozwój metod numerycznych połączonych z szybkim postępem maszyn cyfrowych umożliwił ich przybliżone rozwiązanie a w następstwie symulację przepływu w układach dolotowych.

Najnowsze sposoby wyznaczania napełnienia cylindra spalinowego, uwzględniające wpływ układu dolotowego, można sprowadzić do wyznaczenia oporów przepływu oraz drgań słupa gazu w układzie dolotowym metodami CFD (*Computational Fluid Dynamics*). Programy CFD bazują najczęściej na metodzie elementów skończonych MES [1], [12], [13], [16] lub na metodzie objętości skończonych MOS [4], [5]. Programy te wyznaczają pole prędkości i pole ciśnień powstające podczas przepływu czynnika w układzie dolotowym. Umożliwiają wyznaczenie przepływu z uwzględnieniem geometrii, tarcia o ścianki przewodu, lepkości czynnika oraz wymiany ciepła. Aby wykonać obliczenia, należy przygotować kształt nume-

ryczny układu dolotowego, następnie dyskretyzować obszar obliczeniowy, np. z użyciem programu Gambit [3]. Dla tak przygotowanych danych przyjmuje się warunki brzegowe i początkowe oraz wybiera parametry obliczeń. Metody CFD są stosunkowo tanie, nie licząc zakupu sprzętu i oprogramowania.

Poprawne przygotowanie siatki wymaga przestrzegania zasad [1], [2], [10], [14]. Założenie warunków brzegowych i początkowych oraz wybór pozostałych parametrów obliczeń [1], [2], [9], [11], [15]. Czas obliczeń przepływu stacjonarnego jest stosunkowo krótki jeżeli do obliczeń zostanie wykorzystany procesor klasy "core i7" dochodzi do kilkunastu godzin w przypadku układu dolotu powietrza silnika spalinowego. Obliczenia niestacjonarne (z uwzględnieniem całego suwu ssania) trwają do kilku dni. Obecnie możemy znaleźć wiele programów liczących, a utrudnieniami występującymi jest wymiana danych między nimi [6]. W metodach CFD problemem jest interpretacja wyników, komputer, bowiem "policzy wszystko", niestety nie zawsze zgodnie z uwzględnieniem fizycznych cech zjawiska. Wymaga to umiejętnej interpretacji wyników. Do obliczeń przepływu wykorzystano system obliczeniowy FLUENT, uznany za jeden z najlepszych komercyjnych oprogramowań dostępnych na rynku.

1. BADANIA NUMERYCZNE SILNIKA MASZYNY ROBOCZEJ GÓRNICTWA ODKRYWKOWEGO

Przeprowadzono badania numeryczne układu dolotowego tłokowego silnika spalinowego o zapłonie samoczynnym, numerycznie przystosowanego do zasilania gazem ziemnym.

Celem badań było określenie poprawności działania obecnie stosowanych instalacji zasilających silnik w CNG. Badania zawężono do obserwacji strumienia paliwa doprowadzanego zaworem (rys. 1) montowanym na przeciwległej do kanałów dolotowych głowicy, płaszczyźnie kolektora. Wymieniony sposób montażu zaworu gazowego jest obecnie dominującym trendem w instalacjach CNG, uzależnionym od warunków technicznych takich jak: budowa kolektora dolotowego i zabudowa komory silnikowej.

Rys. 1. Zawór gazu dozowanego do silnika spalinowego

2. TRANSLACJA GEOMETRII KOLEKTORA DO POSTACI NUMERYCZNEJ

Budowę modelu geometrycznego rozpoczęto od pomiarów geometrii kolektora dolotowego (rys. 2). Następnie wymiary wprowadzono do postaci numerycznej z użyciem interfejsu graficznego programu Gambit stanowiącego Preprocesor systemu obliczeniowego FLUENT. Kolejnym krokiem było wstępne zdefiniowanie warunków brzegowych (rys. 3a, 3b) w modelu geometrycznym.

AUTOBUSY

3. DYSKRETYZACJA PRZESTRZENI OBLICZENIOWEJ

Przeprowadzono dyskretyzację przestrzeni obliczeniowej (rys. 4) na skończoną ilość ok. 1 200 000 objętości. Przeważającą część objętości stanowiły elementy typu "Quad" wykazujące wyższą dokładność obliczeniową w porównaniu do elementów typu "Tetra", które zastosowano jedynie w początkowej, nieforemnej części kolektora dolotowego. Konieczność zastosowania elementów typu "Tetra" jest motywowana mniejszą degradacją tego typu elementów w przypadku opisu nieforemnych kształtów w porównaniu do elementów typu "Quad". Konsekwencją powyższego działania jest mniejszy błąd numeryczny pomimo zastosowania elementów typu "Tetra".

Rys. 4. Dyskretny model geometryczny

Szczególnych zabiegów podczas budowy siatki geometrycznej modelu numerycznego wymagał montaż zaworu gazowego (rys. 5). Powodem konieczności zastosowania bardziej złożonej procedury dyskretyzacji był kształt dyszy zaworu, który w modelu odpowiada powierzchni koła. Koło o rozmiarze ($\emptyset = 4 \text{ mm}$) zostało opisane elementami typu "Tetra" dostosowanymi wielkością. Efektem zastosowania tak małych elementów była konieczność zastosowania warstwy przejścia (*Bondary Laye*) do elementów większych, którymi została opisana pozostała część modelu geometrycznego (rys. 5).

Rys. 5. Dyskretny model geometryczny z widoczną warstwą przejścia

4. WPROWADZENIE WARUNKÓW BRZEGOWYCH

Kolejnym krokiem był eksport dyskretnej postaci modelu geometrycznego w pliku typu "mesh" a następnie import do "solvera" systemu obliczeniowego FLUENT. Przeprowadzono skalowanie, wprowadzono model turbulencji (k- ε) i zdefiniowano wartości brzegowe tzn. ciśnienie panujące w kolektorze dolotowym (p = 0,2 MPa) oraz ciśnienie dostarczanego gazu (p = 1 MPa). Następnie przeprowadzono obliczenia i po osiągnięciu zadowalającej zbieżności (10·e⁻⁵) do rozwiązania dokładnego zakończono iterację na 1700 kroków obliczeniowych (rys. 6).

Rys. 6. Wykres zbieżności wyników obliczeń

5. WYNIKI BADAŃ NUMERYCZNYCH

Efektem badań numerycznych było otrzymanie pola prędkości, ciśnienia oraz stężeń metanu i tlenu w mieszaninie powietrze-gaz ziemny. Rysunki 8-10 wizualizują pola wartości najważniejszych parametrów.

Rys. 7. Wektorowe pole prędkości z objętościowym udziałem frakcji

Na rysunku 7 zilustrowano stężenia dwóch faz w mieszaninie powietrze-metan w momencie, gdy zawór gazowy jest otwarty i dystrybuuje paliwo, odpowiada to oczywiście jednej z sześciu chwil największego stężenia metanu (przypadek silnika sześciocylindrowego), w kolektorze dolotowym podczas cyklu pracy silnika. Na rys. 7 fazę nr 1 stanowi powietrze natomiast fazę nr 2 – metan. Podczas analizy pola stężeń można zauważyć nagły wzrost udziału metanu w mieszaninie gazów.

Na rysunku 8 precyzyjniej zilustrowano proces zasilania cylindrów poprzez widok stężenia dwóch faz w mieszaninie powietrze-metan. Na rysunkach 8 i 9 udokumentowana jest chwila dawkowania metanu przez zawór gazowy dedykowany do zasilania czwartego cylindra.

AUTOBUSY 125

Rys. 8. Wektorowe pole prędkości z objętościowym udziałem frakcji na płaszczyznach kanałów głowicy silnika

Rys. 9. Wektorowe pole stężeń składników mieszaniny zasilającej czwarty cylinder.

Analizując zwrot wektorów oraz udział faz w mieszaninie przepływającej przez kolektor w otoczeniu kanału dolotowego cylindra czwartego, widoczne jest nagłe wzbogacenie mieszaniny w metan. Wzbogacenie dochodzące do 100% udziału fazowego obejmuje cały obszar kolektora dolotowego od współrzędnych 525 mm długości kolektora do początku kolektora (początek przyjęto od strony koła rozrządu).

Rys. 10. Wykres udziału fazowego metanu w osi płaszczyzny kanału dolotowego do czwartego cylindra silnika

Efektem analizowanych pól stężeń i zwrotów wektorów prędkości przemieszczających się strug mieszaniny gazów w kolektorze dolotowym jest pole stężeń mieszaniny zasilającej czwarty cylinder przedstawione na rys. 10. Widoczne jest znaczne zróżnicowanie stężeń; pole o stężeniu 100% metanu zajmuje około 60% powierzchni przekroju poprzecznego kanału dolotowego głowicy i rozpoczyna się od 525 mm długości kolektora, natomiast na długości kolektora 530 mm do 560 mm stężenie metanu spada do wartości 45% zawartości objętościowej metanu.

WNIOSKI

Podsumowując wyniki badań numerycznych można stwierdzić, iż umiejscowienie zaworu gazowego w ściance kolektora dolotowego po przeciwnej stronie kanału dolotowego głowicy, nie jest właściwe; powietrze płynące w kolektorze dolotowym posiada na tyle duży pęd, iż zmienia kierunek wektorów prędkości dozowanego metanu (pomimo o rząd wielkości większych wartości ciśnienia między utleniaczem a paliwem). Efektem wyżej opisanego zjawiska jest negatywny fakt częściowego (około 60% pola powierzchni) zasilania paliwem gazowym cylindra (do którego paliwo było dedykowane). Pozostała ilość paliwa przemieszcza się zgodnie z kierunkiem przepływu powietrza, zasilając kolejne cylindry. Przy tak rozwiązanym zasilaniu następuje negatywne zróżnicowanie w składzie mieszanki poszczególnych cylindrów, co prowadzi do niepoprawności w procesie spalania a w następstwie do nierównomiernego obciążenia wału korbowego, niespalenia paliwa i emisji do otoczenia większej ilości szkodliwych związków łącznie z paliwem.

BIBLIOGRAFIA

- 1. Ansys. www.ansys.com 2006.
- Atkins W.S., Consultants and Members of the NSC, Best Practice Guidelines for Marine Aplications of Computational Fluid Dynamics. Sirehna, HSVA, FLOWTECH, VTT, Imperial College of Science & Technology, Germanischer Lloyd, Astilleros Espanoles, http://pronet. wsatkins.co.uk/marnet/
- 3. Fluent Inc., Fluent 6.1 User's Guide, 2003.
- 4. Gryboś R., Podstawy Mechaniki Płynów. Wydawnictwo Naukowe PWN, Warszawa, 1998.
- 5. Johnson R., Fluid Dynamice, CRC Press LLC, Floryda, 1998.
- Khodorovsky A., Experience in Using Various CAD Systems for Hull Lines Design. Problems of CAD System Integration into Current Design Technology. 14th International Conference on Hydrodynamics in Ship Design HYDRONAV 2001, Szczecin-Międzyzdroje, September, 27-29, 2001.
- 7. Mysłowski J., Doładowanie bezsprężarkowe silników z zapłonem samoczynnym. WNT, Warszawa, 1995.
- 8. Mysłowski J., Doładowanie silników. WKŁ, Warszawa, 2002.
- 9. Oertel Jr. H., Laurien E., Numerische Stromungsmechanik. Springer-Verlag, Berlin, 1995.
- 10. Olsen N., *Computational Fluid Dynamics in Hydraulic and Sedimentation Engineering*. The Norwegian University of Science and Technology, Trondheim, 1999.
- 11. Peyreat R., Taylor T., Computational Methods for Fluid Flow. Springer-Verlag, New York, 1983.
- 12. Rusiński E., Czmochowski J., Smolnicki T., Zaawansowana metoda elementów skończonych w konstrukcjach nośnych. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2000.
- 13. Rusiński E., Zasady Projektowania Konstrukcji Nośnych Pojazdów Samochodowych. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2002.
- 14. Thompson J., Warsi Z., Mastin C., *Numerical Grid Generation Fundations and Applications*. Elsavier Science Publishing Co., Inc., New York, 1985.
- 15. Wilcox D., Turbulence Modeling for CFD. KNI, Inc., Anaheim, 2002.
- 16. Zienkiewicz O., Metoda Elementów Skończonych. Arkady, Warszawa, 1972.

Autorzy:

mgr inż. Aleksander Górniak – Politechnika Wrocławska

mgr inż. **Ryszard Michałowski** – PGNiG SA, Dolnośląski Oddział Obrotu Gazem we Wrocławiu, Gazownia Wałbrzyska

AUTOBUSY

dr inż. Marcin Tkaczyk – Politechnika Wrocławska