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Abstract. The most difficult type of waves to analyse in nonlinear thermo-elastic mate-
rials are the shock waves. We develop the theory of shock waves in heat conductive ela-
stic materials. We consider the forming of the waves with strong discontinuity (so-called
thermal shock waves) in nonlinear thermoelasticity describing the propagation of the
heat with finite speed. We proved the mathematical, physical, necessary and sufficient
conditions of the forming of the thermal shock wave and mechanical shock wave in the
nonlinear thermoelasticity.
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1. Introduction

Before starting the formulation of the problem we recall some facts
from the theory of waves.

Wave motion can be treated generally as the propagation of distur-
bances in a medium.

The wave phenomenon can be described by two features:

— it doesn’t affect the mass transportation
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— its localization in the space is described by the surface named the front
wave.

The local disturbances are the source of the wave motion and are propa-
gated with the finite speed in the space.

If the primary source of the given wave is the harmonic vibration
with frequency w, then such a wave is named the harmonic wave and the
equiphase surface is the wave front.

In this case the characteristic value is introduced

A=cT
where T — is the length period and is given by the formula

r=2T
w

In the investigation of the propagation of the wave we also use the wave

vector k with the length
= 2w

k = k.
f==

Vector k defines the direction of the wave propagation and is perpendicular

to the equiphase plane.
In the description of the nature of the wave phonomena we also use:

— the phase velocity expressed as
w
cy = —
Tk

and
— the group velocity given by the formulae

If we have the equality
Cf = Cqy

the wave is called the non-dispertion wave, but if we have the relation

cf# cq

the wave is called the dispersion wave.
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With respect to the physical phenomena we can distinguish different kinds
of waves:

— acoustic waves

— mechanical waves

— electro-magnetic waves
— thermal waves

— elastic waves

— optical waves

and others.

In the mathematical description, the phenomena of the evolution of
the wave in the time space (t,2) where, t € Ry, and x = (21,29, 73) € R?
is determined by a solution of the wave equation, which can be written as

follows:
1
(—6263 — v2> o=

or in the form
Dc(ﬁ =f

where V2 — is the Laplace’s operator while [, — is the d’Alambert’s oper-
ator.

The geometrical and physical properties of the wave motion depend
on the dimension of the space, so we distinguish — one-dimensional wave,
two-dimensional wave and three-dimensional wave.

It is worth to mention the so-called Hadamard’s principle, which tells
us that only in odd dimensional spaces R?"+! the Huygen’s principle is
fulfilled and that the propagating sygnal in the space preserves its primary
frequency.

Any solution of the wave equation (hyperbolic type) can be represented
by the formulae:

o(t,x) =H <t— %) F(t,x) = {g(t,x) for ¢ >

&

To

for t <

°|

where: H(-) — denotes the Heaviside’s function.
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2. The front of the wave and the surface of the discontinuity

Below, we present a mathematical description and the properties of
the front wave.

Let S — be a smooth surface which changes with respect to the times
with localization in the Euclidean space E>.
Let us consider such a moving surface S defined by the equation:

S:y(t,r) =0, xz€k, tecRy. (2.1)

The unit normal vector to the surface S is expressed by the formula

_ _ grady
n = . 2.2
rady] 22
The velocity with which the surface S is moving is determined by the
formula B
t = -
grady] " " 23

If the surface S is the front of the wave, then D denotes the velocity of the
propagation of the wave.
In the time-space I x E3 (where I = (0,00) is the time interval), the wave
front is a non-moving hypersurface so-called hyper-cone.
The surface S is the material surface if the velocity D = v,,, where v,, —is
the velocity of the particle in the normal direction to the given surface.
The wave front is the non-material surface. The wave velocity depends on
the physical properties of the medium in which the wave is propagated and
on its intensity as well.
From this point of view we distinguish linear and nonlinear waves.
The wave velocity changes its value and the direction of the propagation.
The curve which is tangential to the normal vector is called the rays
of the wave. The changes of the direction of the wave velocity lead to the
increase in the wave intensity. In this case the rays are intersecting each
other and the so-called caustic will be formed.
The change of the value of the wave velocity causes the higher discontinuity
of the parameters describing wave motion in the neighbourhood of the wave
front i.e. blows up the gradient — the so-called gradient castastrophe.
The waves generating at different moments catch up with one another
(are overtaking one another) and affect the wave intensity at one side of
the wave front. The next effect is the formation of a strong discontinuity
front — a shock — wave front.
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These kinds of the waves with strong discontinuity are called shock waves.
The main aim of our paper is the mathematical and physical interpre-
tation of the forming of thermal shock waves.
Let V(t,x) be a scalar or a tensor field defined in the open domain
Q C E? in which S C Q. Let us assume that:

— the field V is continuous on both sides of the surface S

— some derivatives of the field V' can be discontinuous on the surface S
(experience abrupt changes as they pass through the surface S) but
are defined on one — side of the surface S with the both sides of the
surface S

— the field V is satisfying the equation LV = 0 in the domain ©\ S, where
L denotes the differential operator defined by a physical process.

The conditions which characterize the properties of the derivatives of the
field V' and the expresion (LV') by passing though the surface S are called
the compatibility conditions.

The surface S is called the surface of discontinuity. In general, we distin-
guish the compatibility conditions of the first, second and third order (or
higher order) with respect to the order of the derivatives of the field V'
which can get discontinuites and with the order of the operator L.

These conditons are divided into geometrical and kinematical conditions
which are connected to the behaviour of the tangential derivatives of the
field V on the moving surface S and the substantial derivatives on the
moving surface S, respectively.

The different kinds of the conditions are the dynamical compatibility con-
ditions related to the sense in which the operator LV is satisfied on the
discontinuous surface S.

They result from the application of the Green-Gauss theorem to the ex-
pression LV on the discontinuous surface and are the so-called conserva-
tion conditions (or balance conditions) by passing through the surface of
discontinuity. These conditons for the first component of the vector field
V' = [u,v,w] can be written as follows:

[[gradu x 7]] = 0 — geometrical conditon
Hg_?: + (gradu)oﬁ” =0 — kinematical condition
[[—Du + u(uon)]] =0 — dynamical condition
where [[-]] — denotes the jump of the value by passing through the surface

of discontinuity.
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If the surface S is the wave front i.e. the characteristic surface of the oper-
ator L, then in the linear medium the discontinuities of all orders appear
only on this surface.

In the nonlinear medium the discontinuities of some order can appear on
various surfaces. In the case of the shock waves we will be analyzing the
behaviour of the derivative of the first order of the considered field. We can
describe in the linear, homogeneous and isotropic medium the unique rela-
tion between the direction of the wave propagation and the local direction
of the vibration of the field on the wave front. We distinguised two kinds
of waves:

— transversal waves
— longitudinal waves

For example: the electromagnetic waves — are the transversal waves, acous-
tic waves — are the longitudinal waves but the mechanical waves are
transversal and longitudinal waves as well (cf. [8], [9], [10], [11], [12]). In the
solutions of some boundary value problem there appear the so-called sur-
face waves i.e. Raylaigh’s waves, which have a more complicated structure

(ct. [8)).

Shock waves in solids

Shock waves develop and propagate in media in which the character-
istic of equations describing their motion intersect (cf. [7], [12], [17-23]).
Physically speaking this means that disturbances which develop later catch
up with the earlier ones and accumulate, and the accumulated dirturbances
become strong discontinuity surface — a shock-wave front is formed. The
effect occurs when continuous and gradual changes in disturbances are in-
volved.
If the distrubances are generated suddenly for example by a physical, chem-
ical, nuclear explosion or by a collision of bodies at high speeds, then
a shock-wave front is formed at once in media with the properties men-
tioned above.
The forming of the wave with strong discontinuity in the nonlinear ther-
moelastic medium with propagation of heat with finite speed is considered
below.
The main aim of our paper is to designate the necessary and sufficient con-
ditions with which we will describe the forming of thermal shock wave in
nonlinear thermoelastic medium with propagation of the heat with finite
speeds. Before starting the formulation of our problem we recall some pa-
pers devoted to the theory of shock waves published by S. Kaliski (cf. [12,
13]) and E. Wlodarczyk (cf. [21-23]) where the problems of shock waves in
elastic medium were consider ed. Rakhmatulin (cf. [18]) investigated the
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problem of the forming of the wave with strong discontinuity but only in
elastic mediums. W. Nowacki was the first in Poland (cf. [13-16]) who de-
veloped the classical hyperbolic-parabolic thermoelasticity theory in which
the propagation of heat was described by infinite speed (parabolic heat
equaitons).

In view of these facts in such thermoelastic medium the "thermal shock
wave” does not exsit. In our paper we proved that thermal shock wave
appearing in thermoelastic medium which describes the propagation of heat
with finite speed. It means that the propagation of heat is presented by
hyperbolic heat equation. It is according to physical intuitions. This kind
of theory of thermoelasticity is called-hyperbolic thermoelasticity theory
(ct. [2], 3], [4]. [5]. [6], 8], [12])-

The hyperbolic thermoelasticity theory was also investigated by I. Ig-
naczak, J. Gawinecki (cf. [3], [4], [5], [6], [8]). In order to make our con-
sideration more clear, we consider the initial-boundary value problem for
half-infinite bar modelling thermoelastic medium with finite speed propa-
gation of heat.

We consider the system of equations of hyperbolic thermoelasticity theory
in the form of the conservation laws:

— the equation of balance of momentum

O (pu) — 0,0 =0 (3.1)
— the equation of balance of energy

di(pe) + 0,9 =0 (3.2)

and the constitutive equation of the form:
— for stress tensor

o = a(e,8) = E(6)f (=) - ag(6) (3.3)

— for the internal energy

/]
pe = [ oCulmin+1(0): = e(6,2) (3.4)
0o

— for the heat flux according to the Cattaneo theory (cf. [1])

q+700iq + k(0)00 =0 (3.5)
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with the integral condition of the form:
Oxu = O (3.6)

where t € Ry 2 € (0,00), with the system of equation (3.1)-(3.6) we
associated the initial-boundary condition of the form:

v(0,2) =0, e(0,z) =0, 0(0,z) =0

3.7

O'(t,O) = _pO(t)v q(t,O) = _QO(t) or 9(75,0) = HO(t)' ( )

In the initial-boundary value problem (3.1)—(3.7) we used the notation:

p — denotes density of the medium, v — the velocity, o — stress tensor, e

— the internal energy, € — the strain tensor, ¢ — the heat flux, 6 = T'+Tj

— the relative temperature, T' — the absolute temperature, Ty — the

temperature in the reference configuration, ¢, — the specific heat, k —

the coefficient of heat conductiving, 79 — the relaxation time, v — the
coefficient of mechanical — thermal coupling.

The Equation (3.5) is the Cattaneo equation for the heat flux which leads
us to the description of the the propagation of heat with finite speed. If
7o — 0 then from equation (3.5) we get the classical Fourier law for the
heat flux.

The system of equations is the nonlinear system of hyperbolic thermoelas-
ticity theory. Below, we will lead out the necessary and sufficient condi-
tions for the forming of thermal shock waves in the initial-boundary value
problem (3.1)—(3.7) describing the half-infinite bar being modelled as the
nonlinear thermoelastic medium. It is worth to emphasize that it will be
done for the first time. So, the results are also oryginal and innovatory ones.
Up till now, the shock waves have been investigated in an elastic medium
(cf. [12], [13—21]) but not in the thermoelastic medium.

In order to prove our results, we will act as follows.

At first, after some transformations we can write the system of equations
(3.1)—(3.6) as follows:

do do
de de )
%&9 + Eaﬁ +0,q¢=10 (3.8)

Opu = Ose.
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Introducing the notation:

oo , Oe oo de
50 = Ps 55 = PCws %__ﬂa &—59 (3.9)

where: a; — is the local velocity of the propagation of mechanical pertur-
bation in the medium, 8 — is the thermo-mechanical coupling coefficient.
We can write the system of equations (3.8) as follows:

di(pv) — patdye + 0,0 =0
pCp 00 + 00 + 0,.q =0
T004q + q + kD0 = 0

Oyv — Ore = 0.

(3.10)

So, we obtain the system of equations for the vector V' = [v,¢,0, ¢q] with
the parameters (as, 3, ¢y, k, 7).

Now, we consider the following problem at the phase plane (¢,z). Let the
smooth normal curve be given on the phase plane (¢, )

C:x=¢(t).

The values of the derivatives of the components of the vector V in the

tangential direction to the curve are as follows:
dv dx
-9 D —
a Ty
de dx
= _9 Dy —
TR
do dx
— =00+ 0,.0—
TR
@ dx

— 9,0+ 0,q .
T Rl 7

We can write the system of equations (3.10) and (3.11) in the matrix form

MX =F (3.12)

(3.11)

where: -
B &gv T 0
OV 0
at€ 0
Oy | —a
2,0 | F = é_v; (3.13)
13
0,0 i
g 46
L 02q dq
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(p 0 0 —pa®> 0 B 0 07
0 0 B9 0 pe, 0 0 1
o1 -1 0 0 0 0 0
00 0 0 0 k m O
M=11 4 o 0o 0 0 0 0 (3.14)
o0 1 % o0 0 0 0
0 0 0 0 1 4 0 o0
o o 0 o0 0 0 1 4]

The curve C: & = ¢(t) on which the system of equations (3.12) doesn’t
have the unique solution (cf. [7], [13]) is named the characteristic curve.
The directions ‘fi—f tangential to the curve C are-called the characteristic
directions.
The characteristic directions can be determined by the characteristic equa-
tion

det M =0 (3.14a)

where the determined M, is given by the formula

dx
dt

4
det M = 1ppe, <d_x> — (top?coa’ + 10370 + k,) (

2
0 ) + kya? (3.15)

or after some calculation

dr\* b 320\ (dx\> k 1
detM = || =) —(a? - 2
¢ [( dt > <a5 * ToPCy * PQCU > < dt > * ToPCo as ToPCy

(3.15a)
or finally
dz\* dz\? 9 9 9 9 9 1
detM = [(E) — <E> (as + aT6 )+ GSGT WTCU
where: L 2
a% = , 6% = 52 : (3.15D)
T0PCy p*ey

After some calculations, the characteristic equation has the form:

do\* da\”
0P’ Cy <d—f> — (Top’coal + 10 8°0 + kp) (d_f> +kpa; =0  (3.16)

() =) () ) (@) =0 o

or
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2
where: a% = roper is the velocity of thermal wave; 6% = B0 _ s the
thermo-mechanical coupling coefficient

Remark 3.1.
— If 79 — 0 (cf. (3.15) we obtain the classical theory of thermoelasticity

in (3.16)) so we have:
dz\’
—k, ((E) - a§> =0 (3.18)

it means that we have only one characteristic direction (d—f)g = a?
(describing the mechanical wave).

— If 6 — 0 (cf. (3.17)) (i.e. thermo-mechanical coupling does not exist)
from (3.17) we have

dz\’ 9 dz\’ 9
i bt I =0
1.e. we obtain two characteristic directions

dz\? 9 dz\? 9
E = Qg or E = ar

where a7 — determines the thermal wave for wave equation without
thermo-mechanical coupling.
Generally, equation (3.16) has two solutions:

<dm>2

dt 1

(dm)Q _
dt 9

A= (a2 —a%)? +26%(a® +a%) + 6" > 0. (3.19)

1
5((a§+oﬂT+62)+\/Z):c?>0

(3.18a)
1
5((ad a7 +6%) = VA) = >0

where:

The values ¢} and c3 denote the coupled velocity of the mechanical-
-thermal wave and the thermo-mechanical wave, respectively.
From formula (3.18a) it follows that

ci > ¢ (3.20)
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Moreover, in general case, ¢7 and c3 are the functions of the strain tensor
¢ and the temperature 6.
So, we appointed two characteristic directions given by the formulae

(fl—f) — 3(e.0)
<fl_f>2 _ 2(.0).

Analyzing the properties of the system of equations (3.12) we get the solu-
tion in the form of the Riemann’s wave for which the solution of equation
(3.20) for the initial data equal to zero has the form:

(3.21)

x=c(T)(t—7T)
and (3.22)
x=co(T)(t —7)

where 7 — denotes the initial parameter of the starting of the line i.e. t = 7,
x =0 (cf. Fig. 3.1).

t

Fig. 3.1. The characteristic direction on the phase plane (¢, ), (t > 0), (z > 0)

The Riemann’s wave can propagate up till the moment of the intersection
of the two sucessive characteristic directions (generated in the chronological
successions).
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Now, we consider the situation described above on the phase plane (cf.
Fig. 3.2).

t A
e / -
ool
pohd
//.//
e thermo- mechanical wave
Pp 7 of discontinuity
ty _
\ - - —
{ - -
\’L/ - T _—
“» el - =T
tM ,,,,,,,,,,,,,,,,,,,,,,,,,,, Yo =T T .
Py mechanical-thermo wave
T+ AT = T of discontinuity
> C\K |
-
0 Ty Tp T

Fig. 3.2. Forming of the wave of discontinuity

Now, we investigate the existence of the thermal shock wave in the ther-
moelastic medium. At first, we lead out the beginning of the propagation
of the shock wave in the thermoelastic medium.

We take into account the case of the wave formulation by the Riemann’s
wave propagating with the velocity c¢; the so-called mechanical-thermal
wave (i.e. a wave without the thermo-mechanical coupling i.e. if 6 — 0
becomes a mechanical wave).

In order to prove it, we write the equation of the two characteristics fol-
lowing each other

r=ci(r)(t—71) and x=ci(t+AT)((t—71)— AT). (3.22a)

Using the extension into Taylor series, we get:

x=c (1)t —T1).
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and
v = e (r)(t—1) 4+ dccllf) (t— AT
1 dZC(T) 9 dey(T) 9
3732 (t=7)(AT)" 4+ - —c1(T)AT — T(AT) +---

In the point of intersection we have*

(A Ar)?
t—7= dccll(g) +1 dcéll(g) Doty (3:24)
ot 53— AT 4+ 0(AT)?)

From (3.24) we get:

der (1) A A2
tPlzT—}-Alim o) + dr 7+ o(AT)

7—0 dcéy) + %‘Pj;E”AT + o(AT)?

(3.25)
tp =y )
Py =T+ dei (1) M
dr
e ()
TP = Gy = M-
dr

From formulae (3.25) it follows that the necessary conditions of the forming
of the mechanical-thermal shock wave is as follows
dey(T)
dr

> 0. (3.26)

Analysing in a similar way the thermo-mechanical wave (i.e. a wave which
under the condition § — 0 becomes a thermal wave with velocity ¢3), we

obtain ) ()
Co\T Co\T
tT = tp2 =7+ dfz(q_>, rp, = di(T) = xT. (327)
dr dr

From (3.27) it follows that the necessary condition to form a thermo-me-
chanical shock wave is as follows
dCQ (7')
dt

> 0. (3.28)

* o(AT) — denotes the Landau symbol.
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Remark 3.2. It is worth to emphasize that the intersection of the
mechanical-thermal wave and the thermo-mechanical wave appears only
it tp, = 7 and xp, = 0 i.e. then the shock wave doesn’t form.

From the necessary conditions

dcl(7)>0 or dey(T)

0 3.29
dr dr > ( )

which express the existance of the positive acceleration of the velocity of
the propagation of thermal disturbance in the thermoelastic medium, we
get the physical interpretation of the conditions of forming the wave with
strong discontinuity in the nonlinear thermoelasticity theory.

In our consideration, below we base on the relation:

dei(e(7),0(1))  Oci de  Oc; dO

dr = o-ar a0 ar

>0 (3.30)
where 1 = 1, 2.
We start with the following lemma:

Lemma 3.1. If the thermo-mechanical coupling parameter ¢ (cf. (3.15b))
formula satisfies the inequality

o<<1 (3.31)
then the velocities given by formula (3.18a) satisfy the relation

cd~a(1+6?)
and (3.32)

cg = a%p(l — 6%)

where: 52
- aa
and 1 d .
a? = ;d_‘;, ap = —r?
K? = p% — is the coefficient of the termal diffusion.

Sketch of proof
From formulae (3.18a) it follows that:

1
¢} = S((02 + @b+ %) £ [0} + a2 +62)2 — dafa?) (3.33)
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for ¢ = 1 we have for 747 and for 7 = 2 we have ”—" in the bracket.
We can represent A as follows

A = (a% +a? + 6%)? — 4a3a?
= ((as — ar)” + 8)((as + ar)” + &%)
= (a2 — ar)*(as + ar)® + 6°[(as — ar)” + (as + ar)’]

62(a2 +a2)
4 — . — 2 < 2 1 S T
+6 (a aT) (a +aT) |: + (CLS—CLT)Z(CLS_}-QT)Z (334)
64
+
(as — ar)*(as +aT)2}
52(a2 +a2) 54
(a2 2)\2 s T
= (CLS CLT) {1 + (ag — a/%)Q + (ag — a%)2:|

Putting the formulae (3.34) into (3.33) we get:

o1 62 (a2 + a%)
c%:i[ai—}-a%-l-y—}-a?—a%—}-?ﬁ

+ i JF Y —— i
N
(a3 — a7) ’ a —ap  4ai(af — a7)

1
C% ~ a§<1+62ﬁ>
ag — ap

and acting in a similar way, we obtain

1
a; —ar

This ends the proof of theorem 3.1.
Now, we lead out the physical conditions which are necessary for the for-
mation of a thermal shock wave

Theorem 3.1. Let us assume that

861
50~ 0 (3.35)
i.e. if we deal with a discontinuous wave with mechanical predomination
then the necessary conditions for forming the discontinuous wave is as
follows:
2 Lo do 3.36)
Taar 3.

where +? is some coefficient.
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Sketch of proof
In view of (3.32) we have
1 0o
T=——(1+8 3.37
¢ =+ (337)
Differentiating (3.37) with respect to 7 we get:
d(c?) dey 1 (d [0o 9
=2t =-0 | ZZ(1+6
dr CldT p ldr 85( +41)
1 [(0%0 de 0%c db
= =5—(1+6 —(1+56 3.38
P <862 a0 T ez gy )> (3.38)
100 (9(63) de _ 0(83) do
pOds \ Os dr 00 dr )
In view of assumption (3.38) we have:
dic?) 1 (d%cde 0?0 df
~ - — — . 3.39
dr p \ de? dr + 000z dt (3.39)
Taking into account that
do 0o de o de
— N —— = — 3.40
dr (,6) 9e dr P ar (3.40)
and basing on assumption (3.35) finally we obtain
de | odods
ar 7 A dr
Taking into account (3.29) we have
d?’c do
- - 3.41
&z dr (3.41)
This ends the proof of Theorem 3.1.
Theorem 3.2. Let us assume that
662
— =~0 3.42
e (3.42)
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i.e. if we deal with the discontinuous wave with thermal predomination,
then the necessary conditions for forming the thermal shock wave are as
follows

dk df
2
—— >0 4.43
a0 de (4.43)
where o> — is some parameter.
Sketch of proof
We have (cf. (3.32))
1
2= —kr*(1-6%). (3.44)
To

Differentiating (3.44) with respect to 7 we obtain:

=2cy— = 2(1— 63
dr 2 dr To dT[ ( 1)l
1 [0k? de A(—=62)\ Oe
= [ Z=——=(1-¢? =) = .
To < Oe dT( R < Oe > dT) (3.45)

1 [0k?db d b
2 (9RTAY 62 2 & 2y A0}
5 ( 90 dr 51)) 15 (1) d7>
Taking into account (3.43) from it (3.45) (3.29) we get:

d(c3) = 9=  19rx*df 1 9rdb

~ g = L T 3.46
dr 2 dr 1 00 dt 19 " a0 dr ( )
S0, in view of the above we obtain:
dk df
2
—— >0 3.47
o0 dr (3.47)
where a? = %Ii. This ends the proof of Theorem 3.2.

Remark 3.3. From theorem 3.2 (cf. formula (3.43)) it follows, that the
thermal wave with discontinuous — so-called thermal shock wave appears,
if
dk df
do dr
Since the diffusion coefficient k() increases with temperature, so we have
%(:)>Oanda180%>0.
It means the system is submitted to the increasing influence of temperature.

> 0. (3.48)
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According to Einstein’s theorem (cf. [1]), we have that

To 2 e
Cy = Cyq ? mv

which supports our statements above.

Remark 3.4. From theorem (3.1) cf. formulae (3.30) it follows that in the
case of mechanical wave with discontinuity — so-called mechanical shock
wave the condition of their forming is as follows

d*o do S

ds? dr ’
Since there are materials with ‘ng > 0 and with ‘ng < 0 (cf. Fig. 3.3) we
have two cases:

(3.49)

2 .
— ZTC; > 0 and ‘fi—ct’ > 0 — loading process
2
— ZTC; < 0 and ‘fi—ct’ < 0 unloading the process of stress increase

in which a loading shock wave and an unloading shock wave occur (cf.
Fig.3.3).

t A

dz
T§<O

d’c
de?

Fig. 3.3. Convex and noconvex depedning of the o

Remark 3.5. In the linear case ‘57‘2’ = 0, all directions (for arbitrary 7)
are parallel. In this case shock waves do not occur.

Putting 7 = 0 into (3.23) we get the domain on the phase plane in which
Riemann’s waves occur. In this case we can determine the solution moving

the stress values along the characteristic (cf. Fig. 3.4).
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(7(3507“

—o(t) x x

Fig. 3.4. Graphical solution for the Riemann’s wave

Remark 3.6. If 42 — +00 (i.e. o(t) has the jump at 7 = 79 = 0), then the
beginning of the forming of the discontinuity is located in the point x = 0
(there is no domain of the Riemann’s waves). This occurs in the case of
the unloading process.

Remark 3.7. (Riemann’s paradox) Riemann assumed that the shape of
the shock wave is the envelope of the Riemann’s waves (cf. Fig. 3.5a). But
this is not true because in this case the equation of the balance of energy
is not satisfied (cf. Fig. 3.5a and Fig. 3.5b).

Ly LA
a) b) shock wave
"shock wave"
Riemann's
T t
T2 T2
71 71
0 x 0 x
Fig. 3.5. a) z = ¢ r(¢) velocity of Fig. 3.5. b) x = ¢(t) velocity of the
the wave Dp = d¢+;(t) =c(7) wave D = dﬁ(:), e(r1) < D < e(r2)

From our consideration if follows that the forming of the strong disconti-
nuity:

— depends on the physical properties of the nonlinear thermoelastic me-
dium expressed for example by the dependence of the stress tensor o
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on ¢ and conductivity coefficient k on i.e. 0 = o(e), k = k(0) and other
parameters (cf. (3.3), (3.9))

— depends on the smoothness of the functions describing the external
influence on to thermoelastic medium given for example by po(t), 0o (1)
for x =0 (cf. (3.7))

4. Concluding remarks

In our paper we proved that in the nonlinear hyperbolic thermoelas-
ticity medium two waves with strong discontinuity exist:

— the thermal shock wave
— the mechanical shock wave

We formulated and proved the necessary and sufficient mathematical
and physical conditions for the forming of the thermal and mechan-
ical shock waves. Additionally, we show that the intersection of the
mechanical-thermal and the thermo-mechanical waves is impossible (since
c? > ¢3) so the shock wave cannot be formed by the influence of the thermal
and mechanical wave (cf. Fig. 3.2).

Using the method presented in our paper, we can extend our consid-
eration to the proof of the existence of thermal shock waves in nonlinear
hyperbolic thermoelasticity theory with two relaxation times (for the equa-
tions cf. [3], [4], [5], [8], [12]). It will be done in the future paper.

This paper contains the main part of the invited lecture entitled ” Forming of the waves
with strong discontinuity in thermoelasticity and hyperelasticity” presented at the Sev-
enth International Symposium on Impact Engineering by prof. Jerzy Gawinecki, which
was held in Warsaw, Poland on 4-7 July, 2010.
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J. A. GAWINECKI, A. GAWINECKA, J. RAFA

Powstawanie fal silnych nieciaglo$ci w nieliniowej hiperbolicznej
termosprezystosci

Streszczenie. W pracy przedstawiono teorie fal uderzeniowych w materiatach
sprezystych przewodzacych ciepto. Rozwazano formowanie sie fal silnych nie-
ciaglodci tzw. termicznych fal uderzeniowych w nieliniowej hiperbolicznej termo-
sprezystosci, opisujacych propagacje ciepta ze skonczona predkoscia. W pracy
wyprowadzono i udowodniono matematyczne i fizyczne warunki konieczne i wystar-
czjace do powstania termicznych fal uderzeniowych.

Stowa kluczowe: nieliniowa hiperboliczna termosprezystosé, termiczne fale uderze-
niowe, hiperboliczne réwnanie ciepta, mechaniczne fale uderzeniowe



