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Abstract. Dynamic fields of: displacements, strains, and stresses in a spherical thick-walled ballistic 
casing loaded internally by the pressure of detonation products were studied. The casing material was 
assumed to be homogenous, isotropic, and elastically incompressible. It turns out that this kind of casing 
loaded as mentioned above oscillates radially with specific angular frequency, alike the mechanical 
system with one degree of freedom. Two mathematical models of the studied problem were considered: 
the linear model, in which boundary conditions were applied to the initial position of limiting surfaces 
of the casing (Lagrangian coordinates), and the non-linear model, taking into account the movement 
of casing limiting surfaces in boundary conditions (Eulerian coordinates). For the linear model, the 
analytic closed form solution to the problem was obtained. In case of very small elastic strains, less 
than 1%, the results obtained for this model are convergent to the non-linear solution. Only in this 
range of strains , it can be used in engineering calculations. For larger strains, the errors resulting from 
the linearization of the problem are of the order of dozen and more per cent. The linearization of the 
problem distorts quantitative and qualitative view of casing dynamic parameters.
Keywords: dynamics, ballistic casing, explosive load, incompressible material

1. Introduction

Spatially one-dimensional initial-boundary value problems connected with an 
explosive loading of various media and constructions of cylindrical and spherical 
symmetry have been studied by many researchers [1-10]. The dynamic loading 
of thick-walled cylindrical pipes and spherical reservoirs (ballistic casings) by 
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the internal pressure belongs, amongst other things, to this group of issues. 
The autofrettage is used in the process of production of gun barrels and high‑pressure 
reservoirs. It is a self-strengthening of objects mentioned above with the use of 
high pressure (gaseous mixture explosion) causing the plastic strain in their inner 
layers. After such an overstraining, the nominal pressure applied inside these objects 
causes only elastic strains.

From selected technical issues quoted above it results the conclusion that 
the dynamics of ballistic casings loaded explosively is an important problem 
deserving detailed theoretical studies from different points of view. In the general 
approach, they are mathematically complicated initial-boundary value problems. 
To overcome mathematical difficulties, the reasonable compromise with the physics 
of phenomenon is practiced. Therefore theoretical predictions should be taken with 
reserve and experimentally validated.

In order to obtain an analytic solution to the specific initial-boundary value 
problems, the model simplifications, based on the physical premises of this issue, 
are assumed. For example, basing on linear elasticity theory of small displacements 
and strains, the movement of limiting surfaces in boundary conditions during 
the process of deformation of given system is neglected [1, 10]. The boundary 
conditions are formulated for the initial position of limiting surfaces (boundaries). 
This assumption is made arbitrarily without limitation of its application. The available 
literature lacks any quantitative estimation of the influence of this simplification 
on the dynamic characteristics of the studied objects.

This paper is an attempt of quantitative determination of error caused by 
this simplification. The problem was considered with the use of example of the 
dynamics of a thick-walled spherical ballistic casing loaded by the internal pressure 
of detonation products of high explosive.

2. Formulation of the problem

Dynamic states of mechanical characteristics in a metal thick-walled spherical 
casing loaded internally by the pressure of detonation products of gaseous explosive 
mixture will be determined.

The material of casing is assumed to be homogenous, isotropic, and elastically 
incompressible. The casing movement is characterized by a spherical symmetry 
and it is determined by Hook’s law. Let a and b denote initial radii of the casing, 
internal and external, respectively. A spherical system of the coordinates r, φ, θ is 
used. Therefore the states of stress and strain in the casing material are represented 
by the following principal components of stress and strain tensors:

σr — radial stress,
σφ = σθ — tangential stresses,
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εr — radial strain,
εφ = εθ — tangential strains.
From the spherical symmetry of the problem, it results that it is spatially one-

dimensional. Therefore the parameters characterizing dynamic state of the casing 
depend on one spatial coordinate, r and the time, t. The theory of small strains is used, 
therefore the arguments r, t can be treated as Lagrangian or Eulerian coordinates. 
In the following considerations in Eulerian system, for the distinguishing purpose, 
the spatial coordinate is denoted with the letter R.

The problem is solved on the basis of the linear elasticity theory, according to 
which we can write the following relations [3, 9]:
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where u denotes the radial displacement of casing infinitesimal element and μ is 
the shear modulus:
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In turn, the symbols E and ν denote Young’s modulus and Poisson’s ratio, respec-
tively.

From the mass conservation law, written for the casing infinitesimal element 
in the Lagrangian coordinates r, t in spherical symmetry we have:
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where the symbols ρ0 and ρ denote the initial and current density of the casing 
material.

For metals, at pressure values of the order of a few thousands MPa it can be 
assumed that ρ≈ρ0 = const. An error caused by this simplification is of the order 
of a per cent fraction [10]. Taking this assumption into account, for small strains  
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The equation of motion of the casing infinitesimal element written by means 
of the Lagrangian coordinates r, t has the form:
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For small displacements and strains, determined by formula (2.1), taking into 
account that ( ) ( )/ 1  and  / 1,ru r u rje e= << = ∂ ∂ << Eq. (2.6) can be simplified 
to the following form:
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The identical form of the equation is obtained on the basis of the linear elasticity 
theory in the Eulerian coordinates, R, t, namely:
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Now, we will deal with the modelling of motion of gaseous detonation products 
of explosive mixture contained in the casing.

We assume that the initiation of explosive mixture detonation starts in the centre 
of the casing. After the end of detonation process, the explosion products do not 
diffuse into a metal and, like during underwater explosions [2], they create a gas 
cavity of the initial radius Ra(0) = a. At the moment of hitting of the detonation wave 
on the inner surface of casing (r = a) it undergoes refraction and two divergent shock 
waves are created. The first wave moves towards the outside across the casing wall, 
while the other one concentrically propagates in the detonation products towards 
the centre of the gas cavity. In the following part of this process, the successive shock 
waves’ reflections from the centre of the gas cavity and from the casing surfaces take 
place. Because of high velocities of shock waves propagation (of the order of a few 
thousands m/s) and finite casing dimensions, the nonstationary process of waves 
refraction is of short duration. In this period, the considerable amount of energy 
is irreversibly transferred from the cavity to the casing wall. For example, during 
underwater explosions about 2/3 of detonation products energy is irretrievably 
transferred to the surroundings [1, 2]. This energy is transformed into heat and 
mechanical work. As a result of this phenomenon, the pressure in the gas cavity 
decreases intensively, its oscillations decay, and the whole detonation products expand 
approximately adiabatically. The nonstationary shock wave refraction process of short 
duration (of the order of a few μs) in the cavity and in the casing wall is neglected. 
During this process, the casing material is strengthened (autofrettage).
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After decaying of oscillations of the pressure in the cavity, the thermodynamic 
characteristics of detonation products can be approximated by the polytropic 
gas model [1, 8]. After these simplifications, from the mass conservation law for 
the gas in the cavity and Poisson’s adiabate it results that the pressure acting on the 
inner casing surface after the end of explosive mixture detonation is determined 
by the following formula [6, 8]:
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where Ra(t) is the current inner radius of casing (Eulerian coordinate), i.e.:

	 ( ) ( ), ,aR t a u a t= + 	 (2.10)

and the n coefficient characterizes the amount of internal energy transferred from 
the gas cavity to the casing wall during shock waves refraction. The symbols k and pJ 
denote the Poisson’s polytropic curve exponent and the pressure of detonation 
products in Chapman-Jouget’s point, respectively.

To close the equation system of the problem, the initial and the boundary 
conditions for the considered system should be determined.

Linearized system of Eqs. (2.5) and (2.8) was solved with the following boundary 
conditions:
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and homogeneous initial conditions:
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where
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The solution to the problem formulated above is presented in the next 
section.
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3. Solution to the initial-boundary value problem

The general integral of Eq. (2.5) has the following form:
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where C(t) denotes the arbitrary, continuous and twice differentiable function of 
the time t.

Displacements of the limiting surfaces of the casing can be expressed using 
their Eulerian coordinates Ra(t) and Rb(t), namely:
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Next, from Eqs. (3.1) and (3.2) it follows that C(t) function is also uniquely deter-
mined by the coordinate Ra(t) or Rb(t), i.e.:
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This expressions yield:
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Finally, from Eqs. (3.1) and (3.2) we obtain:
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After using relation (3.5), expressions (2.1) and (2.2) can be written as follows:
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After substitution of relations (3.6) and (3.8) into Eq. (2.8) we have:
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and after integration in respect to R we obtain:
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where A(t) is the arbitrary time-dependent function.
From boundary condition (2.12) and expression (3.9) it follows that:
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and taking relation (3.4) into account we have:
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From relations (3.9) and (3.10) it results that the stress can be determined by 
the following formula:
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In turn, through the substitution of expression (3.11) into boundary condition 

(2.11) and transformations we obtain the non-linear differential equation of the 
second order which the function Ra(t) should satisfy, namely:
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It seems that for small displacements and strains of the casing elements this 
equation can be linearized. In fact, taking into account that ( )1 / 1,u a+ ≈ because 
( )/ 1,u a <<  after this simplification from Eq. (3.12) we obtain:
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The function Ra(t) characterizing the oscillations of the inner surface of the 
casing, according to Eq. (2.14) should satisfy the following initial conditions:
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In order to simplify the further analysis of the problem, the following 
dimensionless quantities were introduced:
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as well as additional parameters:
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where the symbols c, ω0, and T0 denote the propagation velocity of shear wave in 
the casing material, the angular frequency and period of the casing free vibrations, 
respectively.

Equations (3.12) and (3.13) as well as initial conditions (3.14) expressed 
correspondingly by dimensionless quantities (3.15) and after using Eq. (3.16) have 
the following form:
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where:
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The analysis of the relations derived so far leads to the conclusion that all 
mechanical characteristics of the casing after explosive loading are determined by 
analytic formulae (3.5), (3.7), (3.8), (3.11), and (3.12), where Eulerian coordinate 
of the inner surface of the casing, Ra(t), is the unknown function. It is uniquely 
derived from Eq. (3.12) and, in linearized form, from relation (3.13) and initial 
conditions (3.14). Equation (3.12) is non-linear and in a general case it is integrated 
numerically, e.g. with the use of Runge-Kutta method whereas, Eq. (3.13) is solved 
analytically in closed form in the next section.

4. Analytic solution to the problem for the linearized equation

From the analysis of Eq. (3.13) and (3.18) as well as boundary conditions (3.14) 
and (3.19) it results that they constitute the mathematical model for the casing 
loaded by the internal surge pressure p0 which is constant during all motion of the 
casing. The problem simplified in this way can be solved analytically. In order to 
do this we transform Eq. (3.18) into the form:
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After separation of variables in the above-mentioned expression and integration 

we have:
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The analytic shape of xa(h) function allows us to determine, in the closed 
analytic form, all mechanical characteristics of the casing loaded by the internal 
surge pressure p0, namely:
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In the case when the pressure p0 acts statically on the casing inner surface, we 
obtain:
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From the introductory analysis of the formulae quoted above, the general 
conclusion follows that the studied casing loaded by the internal surge pressure  
p0 = const responses like the mechanical system with one degree of freedom which 
oscillates radially with the angular frequency ω0 determined by formula (3.16). As it 
can be seen, this frequency varies in direct proportion to the shear wave velocity in the 
casing material and in inverse proportion to the inner radius of the casing. Moreover, 
the quantity ω0 decreases with the increase in the casing wall thickness (β parameter 
— Fig. 1), what is an obvious fact, taking into account an increase in casing mass.

The dynamic state of mechanical parameters of the casing varies in course of 
time periodically around their static values. Analogously to the mechanical system 
with one degree of freedom, the dynamic coefficient of inner surge load of the 
casing, according to Eqs. (4.2) and (4.7)1, is determined by the expression:
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As it can be seen, the maximum value of Y coefficient is 2.

It follows directly from expressions (4.2)-(4.6) that the maximum absolute 
values of dynamic characteristics of the casing occur in the middle of the vibration 
period (h = 0.5) on the casing inner surface, i.e., for x = 1 and with the increase 
of x coordinate they intensively decrease. The displacement decreases in inverse 
proportion to x2 and the remaining quantities — approximately to x3. The reason 
of these variations is a phenomenon of spatial divergence of studied quantities.

The spatial graphs of the functions ( ) ( ) ( ) ( ), / , , , , and ,r zU P S S Sjx h x h x h x h   
are depicted in Figs. 2-5. Please note some characteristic features of these 
quantities.

From the analysis of formulae (4.4) and graphs shown in Fig. 3 it results 
the conclusion that the function Sr(x, h) can change its sign from negative to 
positive (radial tension of casing parts). This phenomenon occurs if β parameter 
characterizing the wall thickness of the casing satisfies the inequality:

	 4 3 22 5 6 5 0.b b b b+ − − + > 	 (4.11)

The minimum β value satisfying this inequality is 1.79. Therefore in the casing for 
which b = (b/a) < 1.79, the radial tensile stress will not appear.

The maximum value of the function Sr(x, 0.5) is reached in the section:

Fig. 1. Variation of relative angular frequency of the casing free vibrations versus β parameter
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and amounts:
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Fig. 2. Spatial graphs of the function U(x, h)/P for b = 2 and b = 5 
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The change of sign of the function Sr(x, h) is the result of interaction of the inertial 
forces on the free surface of the casing. In case of brittle materials, the tensile radial 
stresses can cause a local fracture in the casing.

It results directly from graphs depicted in Fig. 4 and the analysis of formulae 
(4.5) that the function Sj(x, h) changes its sign twice in the time interval  
0 ≤ t ≤ T0(0 ≤ h ≤ 1). This phenomenon occurs irrespective of the parameter β value 
in every section of casing x < b. Let us notice here that the casing inner radius during 
vibrations does not decrease below the initial value, i.e., Ra(h)> a (Fig. 2).

At the initial instant function, Sj(x, h) satisfies the inequality:

	
	

( ) ( )
2

3

1, , 1 0
1rS Sj

b b b
x h x h

b x

+ +  = = − − ≤  − 	
(4.14)

Fig. 3. Spatial graphs of the function Sr(x, h) for b = 2 and b = 5 
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Then, during the movement of the casing wall, the function Sj(x, h) increases 
and at a determined value of η changes its sign to a positive one. The function  
Sj(x, h) reaches its maximum positive value in the middle of the vibration period  
(h = 0.5) for x = 1 which amounts:

	 ( )
3

max 3

2 11; 0.5 .
1

S Sj j

b

b

+= =
−

	 (4.15)

The relative reduced stress Sz(x, h) according to Eq. (4.6), like the displacement, 
increases monotonically from zero to maximum value which is reached also after 
half of the vibration period (h = 0.5 — Fig. 5). As it can be seen, the inertial forces 
cause some “inertia” in the increasing reduced stress to its maximum value in 
comparison with the sudden increase in the pressure p0. The maximum value of 
the function Sz(x, h) is determined by the formula:

Fig. 4. Spatial graphs of the function Sj(x, h) for b = 2 and b = 5 
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Fig. 5. Spatial graphs of the function Sz(x, h) for b = 2 and b = 5 

It follows from the formulae presented above and the diagrams shown in Figs. 2-5 
that the maximum values of dynamic characteristics of the casing are determined 
by β parameter (the casing wall thickness). The main changes of characteristics’ 
courses take place in the range 1 < b ≤ 5. Whereas, for b > 5, the influence of the 
casing wall thickness for changes of characteristics courses vanishes. In this case, the 
results obtained from formulae (4.2)-(4.6) are comparable with these for a spherical 
cavity in unbounded medium for n = 0.5 [10]. The differences between them do 
not exceed a per cent fraction.
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5. Comparison of solutions for non-linear  
and linearized equations

The non-linear equation (3.17) describing the problem was solved numerically 
with the use of Runge-Kutta method. The results of calculations are presented as 
graphs depicted in Figs. 6-9. The courses obtained from the non-linear equation 
are drawn with solid lines and the parameters of linearized model are presented 
as series of circles. The graphs show courses for the casing inner surface x = 1, 
because the absolute values of casing dynamic characteristics reach their maxima 
there. In further spherical sections of casing, the variations of characteristics 
versus η variable are analogous. They are only respectively smaller because of 
the phenomenon of spatial divergence.

The variation of quantity U(1, h)/P versus η for a few values of the parameters 
P, k, and β is depicted in Fig. 6. The quantities P and k were correlated according 
to the thermodynamic properties of explosive mixtures [6, 8]. The function U(1, h)
represents the tangential strain of the casing inner surface. The comparison of graphs 
shows that the results obtained from both solutions are convergent for P = 0.01, 
this means for very small strains of the order of a per cent fraction. For strains of 
the order of a few per cent, the differences between results exceed 10%. Whereas, for  
P = 0.5 (ej ≈ 0.2) the errors are greater than 50%. As it can be seen, the use of 
the linearized solution is strongly limited.

The graphs representing the functions ( ) ( ) ( )1, , 1, and 1,r zS S Sjh h h are 
depicted in successive Figs. 7, 8, and 9, respectively, in similar way as in Fig. 6. 
Likewise for the function U(1, h), both solutions give the comparable results only 
for very small strains, i.e., for P < 0.1. Whereas, for P ≥ 0.1 the results are divergent. 
The differences are of a dozen and more per cent. Particularly large quantitative and 
qualitative differences occur for the relative reduced stress Sr(1, h). It results from the 
fact that in the non-linear model, the pressure inside the casing varies exponentially 
during vibrations, and on the contrary in the linear system p0 = const.

The dynamic yield point in metals is always finite. It is greater than the static 
one. The obtained solution of the problem is valid only in the elastic range. From 
this fact it follows the limitation of the maximum value of pressure created in the 
casing, i.e., p0 ≤ pmax. The value of pmax can be significantly increased through the 
initial plastic strains caused by the strong shock wave generated in the casing by 
the refraction of detonation wave.

As it is known, plastic strains in metals are caused by the components of stress 
deviator. It can be assumed on this basis that the condition of beginning of material 
plastic flow depends only on the difference of the stresses sj – sr. In point of fact, 
the expression (sj – sr)/2 determines the maximum value of shear stress. Therefore 
according to Tresca condition of plasticity, and in case of spherical symmetry  
— also to Huber-Misses-Hencky, we have:
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	 0 ,z rjs s s s= − = 	 (5.1)

where s0 is the value of dynamic yield point obtained in the tensile test of given 
material.

It follows from graphs presented in Figs. 6 and 9 and from relation (4.6) that 
the quantity Sz(1, h) varies similarly to the function U(1, h). It reaches its maximum 
in the middle of the period (h = 0.5) in the linearized system. The non-linearity of 
system suppresses the reduced stress. With the increase in the casing wall thickness, 
its inertial forces significantly decrease Sz max(1, h) in both systems.

Fig. 6. Comparison of relative displacement of the casing inner surface (x = 1) obtained from the 
linearized (  ) and non-linear () solution

Fig. 7. Comparison of relative radial stress on the casing inner surface (x = 1) obtained from the 
linearized (  ) and non-linear () solution
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6. Final conclusions

The following conclusions result from the analysis of the studied problem:
1.	A  thick-walled spherical casing, made of incompressible isotropic elastic 

material, loaded internally by the pressure of detonation products of high 
explosive, after the initial period of detonation and shock waves refraction 
on the casing surfaces, vibrates with determined angular frequency and 
responses like the mechanical system with one degree of freedom.

Fig. 8. Comparison of relative tangential stress on the casing inner surface (x = 1) obtained from the 
linearized (  ) and non-linear () solution

Fig. 9. Comparison of relative reduced stress on the casing inner surface (x = 1) obtained from the 
linearized (  ) and non-linear () solution
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2.	 The dynamics of a spherical ballistic casing was the example to present 
the effective mathematical non-linear model of solving one-dimensional 
dynamic initial-boundary value problems in the incompressible elastic 
media loaded explosively. This model takes into account the movement 
of limiting surfaces in boundary conditions and represents well the real 
technical issues.

3.	N eglecting the movement of limiting surfaces in boundary conditions, 
often used in literature [1], distorts the qualitative and quantitative view of 
dynamic field of: displacements, strains, and stresses in the studied objects. 
The errors exceed a dozen, and even several dozen per cent.

4.	 The linear model that does not take into account the movement of li-
miting surfaces in boundary conditions yields comparable results with 
the non‑linear model only for very small strains not exceeding one  
per cent.

5.	 The solution presented above can be applied to estimate the strength of 
spherical ballistic casings used at explosive driving of thin-walled rings in 
the research of dynamic properties of metals. Besides, the presented results 
of studies are the modest contribution of knowledge to the vibration theory 
of continuous technical systems.

Received October 22 2010, revised January 2010.
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E. Włodarczyk, M. Zielenkiewicz

Dynamiczna reakcja kulistej osłony balistycznej obciążonej wybuchowo  
na bieżący ruch powierzchni granicznych warunków brzegowych

Streszczenie. Zbadano dynamiczne pola: przemieszczeń, odkształceń i naprężeń w kulistej grubo-
ściennej osłonie balistycznej, obciążonej wewnętrznie ciśnieniem produktów detonacji materiału 
wybuchowego. Założono, że materiał osłony jest jednorodny izotropowy i sprężyście nieściśliwy. 
Okazuje się, że taka osłona pod wymienionym obciążeniem drga radialnie z określoną częstością 
kołową, podobnie jak układ mechaniczny o jednym stopniu swobody. Rozpatrzono dwa mode-
le matematyczne badanego zagadnienia: liniowy, w którym warunki brzegowe lokalizowano na 
początkowym położeniu powierzchni granicznych osłony (współrzędne Lagrange’a) i nieliniowy, 
uwzględniający ruch granicznych powierzchni osłony w warunkach brzegowych (współrzędne  
Eulera). Dla modelu liniowego uzyskano analityczne zamknięte rozwiązanie problemu. W przypadku 
bardzo małych odkształceń sprężystych, mniejszych od 1% otrzymuje się z niego wyniki zbieżne 
z rozwiązaniem nieliniowym. Tylko w tym przedziale odkształceń można go stosować w inżynier-
skich obliczeniach. Dla większych odkształceń błędy wynikające z linearyzacji problemu są rzędu 
kilkunastu i więcej procent. Linearyzacja zagadnienia zniekształca ilościowy i jakościowy obraz 
dynamicznych parametrów osłony.
Słowa kluczowe: dynamika, osłona balistyczna, obciążenie wybuchowe, materiał osłony sprężyście 
nieściśliwy




