PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie możliwości zastosowania kserożelu węglowego jako nośnika żelazowego katalizatora spaleniowej syntezy nanorurek węglowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Investigation of efficiency of carbon xerogel-supported iron as a catalyst in a combustion synthesis of carbon nanotubes
Języki publikacji
PL
Abstrakty
PL
Przedstawiono analizę mikroskopową produktów spalania mieszanin węglika wapnia, azydku sodu i heksachloroetanu z dodatkiem kserożelu węglowego impregnowanego żelazem. Kserożel węglowy otrzymywano w wyniku karbonizacji kserożelu rezorcynowo-furfuralowego zawierającego skompleksowane z rezorcyną żelazo. Karbonizację realizowano w temperaturach 600-1050°C. Spalanie mieszanin prowadzono w stalowym reaktorze w atmosferze argonu pod ciśnieniem początkowym 1 MPa. Nanorurki węglowe znajdowano jedynie w produktach spalania obecnych w tyglu, w którym umieszczano spalane próbki, nie obserwowano ich w produktach zebranych ze ścian reaktora. Na podstawie obserwacji SEM wywnioskowano, że wzrost nanorurek przebiega najprawdopodobniej według mechanizmu końcówkowego w wyniku heterogenicznej katalizy za pomocą osadzonych na kserożelu ziaren Fe. Nie zaobserwowano wyraźnego związku między temperaturą karbonizacji kserożelu a wydajnością i morfologią powstających na drodze syntezy spaleniowej nanorurek węglowych.
EN
Reactions between calcium carbide and hexachloroethane in the presence of sodium azide are exothermic enough to proceed at a high temperature, self-sustaining regime. Combustion of the mixtures was performed in the presence of the Fe-doped carbon xerogel as a catalyst of carbon nanotubes growth. The carbon xerogel was prepared through carbonization of an iron doped organic xerogel at temperatures in a range of 600-1050°C. Combustion reactions were conducted in a stainless steel reactor - calorimetric bomb - under initial pressure of 1 MPa of argon. Reactions were carried out in a graphite crucible. Scanning electron microscopy analysis of the combustion products recovered from the crucible revealed small yield of carbon fibers (most likely nanotubes), which grew via tip-grown mechanism. In the outer area of the reactor, dusty products with soot-like morphology dominated. The correlation between pyrolysis temperature of the carbon xerogel and morphology of catalyzed-grown nanofibers was not observed.
Rocznik
Strony
119--138
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
autor
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Instytut Chemii, 00-908 Warszawa, ul. S. Kaliskiego 2, wkicinski@wat.edu.pl
Bibliografia
  • [1] J. Wood, The top ten advances in materials science, Mater. Today, 11, 2008, 40-45.
  • [2] M. Monthioux, V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, 44, 2006, 1621-1623.
  • [3] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 1991, 56-58.
  • [4] P. M. Ajayan, Nanotubes from carbon, Chem. Rev., 99, 1999, 1787-1999.
  • [5] A. Huczko, Nanorurki węglowe. Czarne diamenty XXI wieku, Bel Studio, 2002.
  • [6] Z. Kang, E. Wang, L. Gao, S. Lian, M. Jiang, C. Hu, L. Xu, One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite, J. Am. Chem. Soc., 125, 2003, 13652-53.
  • [7] G. S. B. McKee, C. P. Deck, K. S. Vecchio, Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis, Carbon, 47, 2009, 2085-2094.
  • [8] M. Endo, T. Hayashi, Y-A. Kim, Large-scale production of carbon nanotubes and their applications, Pure Appl. Chem., 78, 9, 2006, 1703-1713.
  • [9] P. L. Walker Jr., J. F. Rakszawski, G. R. Imperial, Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts, I. Properties of Carbon Formed, J. Phys. Chem., 63, 2, 1959, 133-140.
  • [10] M. José -Yacamén, M. Miki-Yoshida, L. Rendon, J. G. Santiesteban, Catalytic growth of carbon microtubes with fullerence structure, Appl. Phys. Lett., 62, 6, 1993, 657-659.
  • [11] K. J. MacKenzie, O. M. Dunens, A. T. Harris, An Updated Review of Synthesis Parameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds, Ind. Eng. Chem. Res., 49, 2010, 5323-5338.
  • [12] C. P. Deck, K. Vecchio, Prediction of carbon nanotube growth success by the analysis of carboncatalyst binary phase diagrams, Carbon, 44, 2, 2006, 267-275.
  • [13] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, 247, 1996, 1701-1703.
  • [14] W. Wunderlich, Growth model for plasma-CVD growth of carbon nano-tubes on Ni-sheets, Diamond and Related Materials, 16, 2007, 369-378.
  • [15] J. Lee, L. Cheol, S. Chul, K. Hyoun, C. Woong, Large-scale production of aligned carbon nanotubes by the vapor phase growth method, Chem. Phys. Lett., 359, 1, 2002, 109-114.
  • [16] Y. A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, S. Tsuruoka, Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method, Carbon, 43, 2005, 2243-2250.
  • [17] J. P. Tessonnier, D. Rosenthal, T. W. Hansen, C. Hess, M. E. Schuster, R. Blume, F. Girgsdies, N. Pfänder, O. Timpe, D. S. Su, R. Schlögl, Analysis of the structure and chemical properties of some commercial carbon nanostructures, Carbon, 47, 2009, 1779-1798.
  • [18] A. M. Thayer, Carbon nanotubes by the metric ton, Chem. Eng. News, 85, 46, 2007, 29-35.
  • [19] E. C. Koch, Patent DE 10122750, Diehl Stiftung, Niemcy, 2001.
  • [20] E. C. Koch, Metal/Fluorocarbon Pyrolants, VI. Combustion Behaviour and Radiation Properties of Magnesium/Poly(Carbon Monofluoride) Pyrolant, Propellants, Explosives, Pyrotechnics, 30, 2005, 209-215.
  • [21] M. Szala, Combustion Synthesis of Hollow Carbon Fibers, International Journal of Self-Propagating High-Temperature Synthesis, 17, 2, 2008, 106-111.
  • [22] M. Szala, Spaleniowa synteza wielościennych nanorurek węglowych, Biul. WAT, 58, 2, 2009, 27-36.
  • [23] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, Model of carbon nanotube growth through chemical vapor deposition, Chemical Physics Letters, 315, 1999, 25-30.
  • [24] X. Li, G. Yuan, A. Brown, A. Westwood, R. Brydson, B. Rand, The removal of encapsulated catalyst particles from carbon nanotubes using molten salts, Carbon, 44, 2006, 1699-1705.
  • [25] M. Su, B. Zheng, J. Liu, A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chem. Phys. Lett., 322, 5, 2000, 321-326.
  • [26] B. Zheng, Y. Li, J. Liu, CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst, Appl. Phys., A 74, 2002, 345-348.
  • [27] S. A. Steiner, T. F. Baumann, J. Kong, J. H. Satcher, M. S. Dresselhaus, Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes, Langmuir, 23, 9, 2007, 5161-5166.
  • [28] T. Bordjiba, M. Mohamedi, L. H. Dao, New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources, Adv. Mater., 20, 2008, 815-819.
  • [29] C. Liang, S. Dai, G. Guiochon, A graphitized-carbon monolithic column, Anal. Chem., 75, 18, 2003, 4904-4912.
  • [30] C. Moreno-Castilla, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, Physicochemical surface properties of Fe, Co, Ni, and Cu-doped monolithic organic aerogels, Langmuir, 19, 2003, 5650-5655.
  • [31] M. Sevilla, C. Salinas Martinez-de Lecea, T. Valdés-Solis, E. Morallón, A. B. Fuertes, Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports, Phys. Chem. Chem. Phys., 10, 2008, 1433-1442.
  • [32] R. Fu, T. F. Baumann, S. Cronin, G. Dresselhaus, M. S. Dresselhaus, J. H. Satcher, Formation of Graphitic Structures in Cobalt- and Nickel-Doped Carbon Aerogels, Langmuir, 21, 2005, 2647-2651.
  • [33] M. A. Worsley, J. H. Satcher, Jr., T. F. Baumann, Synthesis and Characterization of Monolithic Carbon Aerogel Nanocomposites Containing Double-Walled Carbon Nanotubes, Langmuir, 24, 2008, 9763-9766.
  • [34] I. Kunadian, R. Andrews, D. Qian, M. Pinar Mengüc, Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method, Carbon, 47, 2009, 384-395.
  • [35] R. S. Wagner, W. C. Ellis, Vapor-Liquid-Solid mechanism of single crystal growth, Appl. Phys. Lett., 4, 5, 1964, 89-90.
  • [36] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, J. Catal., 26, 1, 1972, 51-62.
  • [37] R. T. K. Baker, Catalytic growth of carbon filaments, Carbon, 27, 3, 1989, 315-323.
  • [38] R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite, Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene, J. Catal., 30, 1973, 86-95.
  • [39] R. T. K. Baker, R. J. Waite, Formation of Carbonaceous Deposits from the Platinum-Iron Catalysed Decomposition of Acetylene, J. Catal., 37, 1975, 101-105.
  • [40] S. D. Robertson, Carbon formation from methane pyrolysis over some transition metal surfaces, I. Nature and properties of the carbons formed, Carbon, 8, 1970, 365-368.
  • [41] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes Science, 265, 1994, 635-639.
  • [42] M. Moors, T. Visart de Bocarme, N. Kruse, C2 2H2 2 interaction with Ni nanocrystals: Towards a better understanding of carbon nanotubes nucleation in CVD synthesis, Ultramicroscopy, 109, 2009, 381-384.
  • [43] F. Ding, A. Rosen, K. Bolton, Dependence of SWNT growth mechanism on temperature and catalyst particle size: Bulk versus surface diffusion, Carbon, 43, 2005, 2215-2234.
  • [44] G. G. Tibbetts, Why are carbon filaments tubular, J. Cryst. Growth, 66, 1984, 632-638.
  • [45] M. Yadasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura, E. Ota, Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition, Appl. Phys. Lett, 67, 17, 1995, 2477-2450.
  • [46] M. H. Rümmeli, F. Schäffel, C. Kramberger, T. Gemming, A. Bachmatiuk, R. J. Kalenczuk, B. Rellinghaus, B. Büchner, T. Pichler, Oxide-Driven Carbon Nanotube Growth in Supported Catalyst CVD, J. Am. Chem. Soc., 129, 51, 2007, 15772-15773.
  • [47] P. T. A. Reilly, W. B. Whitten, The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process, Carbon, 44, 9, 2006, 1653-1660.
  • [48] R. B. Little, Mechanistic Aspects of Carbon Nanotube Nucleation and Growth, J. Cluster Sci., 14, 2, 2003, 135-185.
  • [49] M. H. Rümmeli, C. Kramberger, A. Grüneis, P. Ayala, T. Gemming, B. Büchner, T. Pichler, On the Graphitization Nature of Oxides for the Formation of Carbon Nanostructures, Chem. Mater., 19, 17, 2007, 4105-4107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0044-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.