PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materiały wybuchowe termobaryczne i o podwyższonej zdolności podmuchowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Thermobaric and enhanced blast explosives
Języki publikacji
PL
Abstrakty
PL
W pracy dokonano przeglądu dostępnej literatury poświęconej wybuchowym materiałom termobarycznym i materiałom o podwyższonej zdolności podmuchowej (burzącej). Podzielono je na ciekłe i stałe mieszaniny oraz materiały kompozytowe, w tym ładunki warstwowe. Szczegółowo scharakteryzowano badane materiały wybuchowe oraz omówiono metody badań ich parametrów wybuchowych, przedstawiono wyniki testów doświadczalnych oraz symulacji komputerowych. Wiele uwagi poświęcono zjawiskom fizycznym towarzyszącym procesowi detonacji takich heterogenicznych kompozycji wybuchowych o zdecydowanym nadmiarze paliwa.
EN
In this work the review has been presented of papers devoted to thermobaric explosives (TBX) and enhanced blast explosives (EBX). The explosives are divided to liquid and solid mixtures, and advanced compositions including layer charges. The explosive formulations are characterized in details and the methods used for determination of explosion parameters as well as the results of experiments and computer simulations are presented. The attention is paid to the physical phenomena accompanying the detonation process in such heterogeneous compositions with a significant surplus of fuel.
Rocznik
Strony
7--39
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, 00-908 Warszawa, ul. S. Kaliskiego 2
Bibliografia
  • [1] A. A. Hopkins-Brown, A. Bailey, AASTP-4 Chapter 2 (Explosion Effects), Part 1 (Blast), Cranfield University, 1998.
  • [2] http://www.nap.edu/openbook/0309091608/html/16.html, 3. Thermobaric Explosives, Advanced Energetic Materials, 2004.
  • [3] R. Schaefer, Development and Evaluation of New High Blast Explosives, 36th International Conference of ICT, Karlsruhe, 2005.
  • [4] Ki-Bong Lee, Keun-Deuk Lee, Jeong-Kook Kim, Relationship between Combustion Heat and Blast Performance of Aluminized Explosives, 36th International Conference of ICT, Karlsruhe, 2005.
  • [5] Keun-Deuk Lee, Ki-Bong Lee, Jeong-Kook Kim, Jin Rai Cho, A New Oxidant for Blasting Explosive Formulations, 37th International Conference of ICT, Karlsruhe, 2006.
  • [6] Ki Bong Lee, Keun Deuk Lee, Jeong Kook Kim, Kyo Tae Kim, Design of Insensitive Cratering Explosive, TEDC-519-051555 ADD Report, Korea, 2005.12.
  • [7] K. L. Mesby, B. E. Homan, R. E. Lottero, High Brightness Imaging for Real Time Measurement of Shock, Particle, and Combustion Fronts Produced By Enhanced Blast Explosives, 24th Army Science Conference, Orlando, 2005.
  • [8] W. A. Trzciński, S. Cudziło, L. Szymańczyk, Studies of Detonation Characteristics of Aluminium Enriched RDX Compositions, Propellants, Explosives, Pyrotechnics, 32, 5, 2007, 392.
  • [9] W. A. Trzciński, S. Cudziło, J. Paszula, Studies of Free Field and Confined Explosions of Aluminium Enriched RDX Compositions, Propellants, Explosives, Pyrotechnics, 32, 6, 2007, 502.
  • [10] W. Trzciński, S. Cudziło, J. Paszula, J. Callaway, Study of the Effect of Additive Particle Size on Non-Ideal Explosive Performance, Propellants, Explosives, Pyrotechnics, 33, 3, 2008, 227.
  • [11] W. Kiciński, W. A. Trzciński, Calorimetry studies of explosion heat of non-ideal explosives, Journal of Thermal Analysis and Calorimetry, 96, 2, 2009, 623-630.
  • [12] J. Paszula, W. Trzciński, K. Sprzątczak, Detonation Performance of Aluminium-Ammonium Nitrate Explosives, Central European Journal of Energetic Materials, 5, 1, 2008, 3-11.
  • [13] W. Trzciński, J. Paszula, Detonation Performance of Al3Mg4 Enriched Explosives and Afterburning of the Detonation Products, Archivum Combustionis, 27, 3-4, 2007, 81-89.
  • [14] A. Hahma, K. Palovuori, Y. Solomon, TNT-Equivalency of Thermobaric Explosives, 36th International Conference of ICT, Karlsruhe, 2005.
  • [15] A. Hahma, Interntional Patent WO 2004/048295 A1, 2004.
  • [16] A. Hahma, Swedish Patent Application 0401456-9, 2004.
  • [17] M. Held, Improved momentum method, Propellants, Explosives, Pyrotechnics, 26, 6, 2001, 290-295.
  • [18] M. Held, Blast efficiency measurements, Propellants, Explosives, Pyrotechnics, 24, 5, 1999, 286-290.
  • [19] M. Held, Impulse method for the blast contour of cylindrical high explosive, Propellants, Explosives, Pyrotechnics, 24, 1, 1999, 17-26.
  • [20] B. E. Gelfand, S. P. Medvedev, S. V. Khomik, M. V. Silnikov, Comparative study of pressure temperature effects from TNT and RDX-IPN-Al explosives, Military Aspects of Blast and Shock - MABS20, Oslo, 2008, 1-8.
  • [21] L. D. Frost, F. Zhang, S. B. Murray, S. McCahan, Critical Conditions for Ignition of Metal Particles in a Condensed Explosive, 12th International Detonation Symposium, San Diego, 2002.
  • [22] I. Glassman, Combustion, 3rd Edition, Academic Press, Orlando, Ch. 9, 1996.
  • [23] F. A. Williams, Combustion Theory, Addison-Wesley, Redwood City, CA, 1985.
  • [24] F. A. Williams, Some Aspects of Metal Particle Combustion, [in:] Physical and Chemical Aspects of Combustion: A Tribute to Irv Glassman (F. L. Dryer and R. F. Sawyer, Eds.), Gordon and Breach, The Netherlands, 1997, 267-289.
  • [25] R. A. Yetter, F. L. Dryer, Metal Particle Combustion and Classifi cation, [in:] Microgravity Combustion: Fire in Free Fall, Academic Pressure, 2001, 419-478.
  • [26] V. A. Fedoseev, Evaporation and Combustion Kinetics of Fine Drops and Particles, Fizika Aerodispersnykh Sistem, 1, 1969, 98-114.
  • [27] F. Zhang, D. L. Frost, P. A. Thibault, S. B. Murray, Explosive Dispersal of Solid Particles, Shock Waves, 10, 2001, 431-443.
  • [28] F. Zhang, A. Yoshinaka, D. Frost, R. Ripley, K. Kim, W. Wilson, Casing Influence on Ignition and Reaction of Aluminium Particles in an Explosive, 13th International Detonation Symposium, Norfolk, 2006.
  • [29] D. L. Frost, S. Goroshin, R. Ripley, F. Zhang, Effect of Scale on the Blast Wave from a Metalized Explosive, 13th International Detonation Symposium, Norfolk, 2006.
  • [30] Z. Zarei, D. L. Frost, L. Donahue, D. R. Whitehouse, Simplified Modeling of Non-Ideal Blast Waves from Metallized Heterogeneous Explosives, 20th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, 2005.
  • [31] D. L. Frost, M. Cairns, S. Goroshin, J. Leadbetter, R. Ripley, F. Zhang, Reflected heterogeneous blast, Military Aspects of Blast and Shock - MABS20, Oslo, 2008, 1-20.
  • [32] W. A. Trzciński, J. Paszula, S. Grys, Badanie parametrów detonacji i charakterystyk fal podmuchowych dla mieszanin nitrometanu z cząstkami stopu glinu i magnezu, Biul. WAT, 56, 4, 2007, 243-256.
  • [33] M. L. Chan, G. W. Meyers, Advanced thermobaric explosive compositions, Patent US 6,955,732 B1, Oct. 18, 2005.
  • [34] M. L. Chan, D. T. Bui, G. Meyers, A. Turner, Castable thermobaric explosive formulations, Patent US 6,969,434 B1, Nov. 29, 2005.
  • [35] K. T. Smith, Presable explosive composition, Patent US 2006/0060273 A1, Mar. 23, 2006.
  • [36] R. H. Guirguis, Reactively induced fragmenting explosives, Patent US 6,846,372 B1, Jan. 25, 2005.
  • [37] Bazrafshan Esmaeil, Pourmortazavi Seyed Mahdi, Fuel Dispersion in Air by Detonation Wave, New Trends in Research of Energetic Matreials, Pardubice, 2006.
  • [38] K. Kin et al., Blast performance of shock dispersed fuel, Military Aspects of Blast and Shock - MABS20, Oslo, 2008, 1-13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0041-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.