PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie laserów kaskadowych (QCL) do detekcji śladowych ilości gazów

Identyfikatory
Warianty tytułu
EN
Application of Quantum Cascade Lasers (QCL) for trace gas detection
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono przykład zastosowania laserów kaskadowych do detekcji śladowych ilości gazów. Dzięki zastosowaniu laserów kaskadowych możliwe jest dopasowanie długości fali emitowanego promieniowania laserowego do widma absorpcji badanych gazów. System detekcji gazów zbudowano w oparciu o lasery kaskadowe generujące wiązkę promieniowania IR o długości fali 5,25 oraz 7,85 µm, komorę wielokrotnych przejść typu White'a i układ detekcji promieniowania laserowego zbudowany w oparciu o szybką, fotodiodę firmy Vigo System. W systemie detekcji gazów wykorzystywano metodę bezpośredniej spektroskopii absorpcyjnej i przestrajaniem wewnątrzimpulsowym, w której długość fali promieniowania IR emitowanego przez laser kaskadowy ulega zmianie w czasie trwania impulsu lasera. W metodzie tej laser generuje długie impulsy promieniowania (rzędu 500 ns - kilku µs), a widmo absorpcyjne uzyskiwane jest w czasie jednego impulsu lasera. Działanie systemu pokazano na przykładzie wyników badań roztworu tlenku azotu (II) oraz metanu.
EN
The article presents application of on quantum cascade lasers QCL for trace gas detection. Quantum cascade lasers enables adjust radiation wavelength to absorption spectrum of measured gas. Designed gas detection system is based on quantum cascade laser QCL (wavelength 5,25 µm and 7,85 µm), multipass cell (White cell configuration) and detection system based on fast photovoltaic (Vigo Systems). Intrapulse absorption spectroscopy for gas detection was used in the measurements. When a long excitation pulse is applied to a QC laser, the laser frequency tunes almost linearly to lower wave number (lower frequency) as a function of time so all absorption spectral elements are recorded during a single laser pulse. In the present paper, the method was introduced, and identification of NO and methane spectral fingerprint using this spectroscopy was demonstrated experimentally.
Rocznik
Strony
46--50
Opis fizyczny
Bibliogr. 44 poz., wykr.
Twórcy
autor
autor
autor
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, Warszawa
Bibliografia
  • [1] Faist, Jerome; Federico Capasso, Deborah L. Sivco, Carlo Sirtori, Albert L. Hutchinson, and Alfred Y. Cho.: Quantum Cascade Laser. Science 264 (5158): 553-556, April 1994.
  • [2] Faist, Jerome; Claire Gmachl, Frederico Capasso, Carlo Sirtori, Deborah L. Silvco, James N. Baillargeon, and Alfred Y. Cho.: Distributed feedback quantum cascade lasers. Applied Physics Letters 70(20), May 1997.
  • [3] David J., Razeghi M.: High-average-power, high-duty-cycle (A - 6 pm) quantum cascade lasers. Applied Physics Letters 81 (23): 4321-4323, December 2002.
  • [4] Duxbury G., Langford N.: Quantum Cascade Lasers bring sensitivity and speed to infrared gas sensing. Spectroscopy Europe, vol. 18, no. 5, pp.18-23, 2006.
  • [5] KosterevA., Wysocki G., Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R. F. Curl.: Application of quantum cascade Lasers to trace gas analysis. Applied Physics B, no. 90, pp. 165-176, 2008.
  • [6] Malis O., Gmachl C., D. L. Sivco, L. N. Pfeiffer, A. M. Serdent, K. W. West, The Quantum Cascade Laser: A Versatile High-Power Semiconductor Laser for Mid-Infrared Applications. Bell Labs Technical Journal no. 10 pp. 199-214, 2005.
  • [7] Peach L. A.: Environmental Monitoring Laser Focus World Vol. 45 Issue 2009.
  • [8] Wysocki G.: Quantum Cascade Lasers- recent advances and future directions. 2’nd International Workshop: Remote Sensing of Emissions, Materiały konferencyjne, 2008.
  • [9] Webster C. R. et al.: Applied Optics 40, 321 (2001).
  • [10] Manne J., Jäger W., Tulip J.: Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques. Applied Physics B: Lasers and Optics, vol. 94, no. 2 (2009),
  • [11] Kosterev A. A., Tittel F. K.: Cemical Sensors Based on Quantum Cascade Lasers. IEEE Journal of Quantum Electronics, vol. 38, no. 6, 2002
  • [12] Nelson D.D., Shorter J.H., Mcmanus J.B., Zahniser M. S.: Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Applied Physics B- Lasers and Optics pp. 343-350, 2002.
  • [13] Peach L. A.: Environmental Monitoring Laser Focus World Vol. 45 Issue 2009.
  • [14] Coffey V. C.: Spectroscopy: Quantum-cascade-laser spectrometer measures gases in atmosphere. Laser Focus World Vol. 45 Issue 2009.
  • [15] Cook D. J., Allen M. G., B. K. Decker, R. T. Wainner, J. M. Hensley, H. S. Kindle: Detection of High Explosives with THz Radiation. International Conference on Infrared and Millimeter Waves 2005.
  • [16] Duxbury G., Normand E. L., N. Langford, M. T. McCulloch, S. Walker: Highly Sensitive Detection of Trace Gases Using Pulsed Quantum Cascade Lasers.
  • [17] KosterevA., Wysocki G., Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R. F. Curl: Application of quantum cascade lasers to trace gas analysis. Applied Physics B 90 pp. 165-176, 2008.
  • [18] Harman T., Tittel F., R. Curl, J. Graf, A. Kosterev: Novel Trace Gas Detection Techniques With Quantum-Cascade Lasers. 24- Y1999-2000-ISSO*UHCL/UH.
  • [19] Wysocki G., McCurdy M., S. So, D. Weidmann, C. Roller, R. F. Curl, F. K. Tittel: Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide. Applied Optics vol. 43, no. 32 2004.
  • [20] Roller C., Namju K., J. Jeffers, M. Camp, A. Mock, P. McCann, J. Grego: Nitric oxide breath testing by tunable diode laser absorption spectroscopy: application in monitoring respiratory inflammation. Applied Optics, vol. 41, no. 28, pp. 6018-6029, 2002.
  • [21] Kroon P., Hensen A., Jonker J., M. Zahniser, W. van’t Veen, A. Vermeulen: Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements. Biosciences, vol. 4, pp. 715-728, 2007.
  • [22] Weidmann D., A. Kosterev, C. Roller, R. Curl: Monitoring of ethylene by a pulsed quantum cascade laser. Applied Optics, vol. 43, no. 16, pp. 3329-3334, 2004.
  • [23] Herbelin M., McKay J.A.: Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method. Applied Optics, vol. 20, Issue 19, pp. 3341-3344, 1981.
  • [24] Busch K.W., Busch M.A.: Cavity-Ringdown Spectroscopy. ACS Symposium series, American Chemical Society, Washington DC, 1999.
  • [25] Wojtas J., Czyzewski A., T. Stacewicz, Z. Bielecki: Sensitive detection of NO2 with Cavity Enhanced Spectroscopy. Optica Applicata, vol. 36, no. 4, pp. 461-467, 2006.
  • [26] O’Keefe Anthony, David A.G. Deacon: Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Review of Scientific Instruments, no. 59, pp. 2544- -2554, 1988.
  • [27] Brown S.S., Ravishankhara A.R., Stark H.: Simultaneous kinetic and ring-down: rate coefficients from single cavity loss temporal profiles. J. Phys. Chem. A, 104, pp. 7044-7052, 2000.
  • [28] He Y., Orr B.J.: Cavity ringdown spectroscopy: new approaches and outcomes. Journal of the Chinese Chemical Society, 48, pp. 591-601, 2001.
  • [29] Hannon T.E., Chah S., Zare R.N.: Evanescent-wave cavity ring- down investigation of polymer/solvent interactions. J. Phys. Chem. B, 109, pp. 7435-7442, 2005.
  • [30] Atherton K.J., H. Yu, G. Stewart, B. Culshaw: Gas detection with fibre amplifiers by intra-cavity and cavity ring-down absorption. Measurement Science and Technology vol. 15, pp. 1621-1628, 2004.
  • [31] Scherer J.J., Paul J.B., H. Jiao, A. O'Keefe: Broadband ringdown spectral photography. Applied Optics, vol. 40, no. 36, pp. 6725- -6732, 2001.
  • [32] Berden G., Peeters R., MeijerG.: Cavity ring-down spectroscopy: Experimental schemes and applications. International Reviews In Physical Chemistry, vol. 19, no. 4. pp. 565-607, 2000.
  • [33] Ayers J. D., Apodaca R. L., W. R. Simpson, D. S. Baer: Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection. Applied Optics no. 33, vol. 44, 2005.
  • [34] Romanini D., Kachanov A. A., N. Sadeghi, and F. Stoeckel: CW- cavity ring down spectroscopy. Chem. Phys. Lett., vol. 264, pp. 316-322, 1997.
  • [35] Tam A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, (1986) 381-431.
  • [36] Faubel W., in: A. Mandelis, P. Hess (Eds.): Life and Earth Sciences. SPIE, Bellingham, Washington, 1997, Chapter 8, pp. 289-328.
  • [37] Yin Q.R., Wang T., Qian M.L.: Photoacoustic and Photothernal Technique and Applications. Science Press, 1991.
  • [38] Uotila J., Koskinen V., Kauppinen J.: Selective differential photoacoustic method for trace gas analysis. Vibrational Spectroscopy 38 (2005) 3-9.
  • [39] Jasek K., Mazurek B., Pasternak M.: Frequency characteristic of an optopneumatic detector. J. Phys. IV, 129 (2005) 125-129.
  • [40] Schuetz M., Bufton J., Prasad C. R.: A mid-IR DIAL System Using Inteerband Cascade Laser Diodes. OSA 1-55752-834-9.
  • [41] Pizarro I.: Development and Application of UV-VIS and MIR DOAS Techniques for Pollutant Trace Gas Monitoring. PFL, 2004.
  • [42] Taslakov M., Simeonov V., M. Froidevaux, H. van den Bergh: Open-path ozone detection by quantum-cascade laser. Applied Physics B: Lasers and Optics, vol. 82, no. 3/2006.
  • [43] Jimenez R., Taslakov M., V. Simeonov, B. Calpini, F. Jeanneret, D. Hofstetter, M. Beck, J. Faist, H. van den Bergh: Ozon detection by diferential absorption spectroscopy at ambient pressure with a 9,6pm pulsed quantum-cascade laser. Applied physics B, Lasers and optics, Vol. 78, no. 2, pp. 249-256, 2004.
  • [44] Van den Bergh H., Simeonov V.: Application of quantum cascade lasers in atmospheric monitoring. Quantum Photonics, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0041-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.