PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image Processing System for Localising Macromolecules in Cryo-Electron Tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A major challenge in today's molecular biology research is to understand the interaction between proteins at the molecular level. Cryo-electron tomography (ET) has come to play an important role in facilitating objective qualitative experiments on protein structures and their interaction. Various protein conformation structures can be qualitatively analysed as complete galleries of proteins are captured by ET. To facilitate fast and objective macromolecular structure analysis procedures, image processing has become a crucial tool. This paper presents an image processing system for localising individual proteins from in vitro samples imaged by ET. We have evaluated the system using simulated data as well as experimental data.
Rocznik
Strony
159--184
Opis fizyczny
Bibliogr. 46 poz., il., wykr.
Twórcy
autor
autor
autor
  • Centre for Image Analysis,. Uppsala University, Box 337, SE-751 05, Uppsala, Sweden, magnusg@cb.uu.se
Bibliografia
  • [1] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.
  • [2] R. A. Crowther, D. J. DeRosier, and A. Klug. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 317(1530):319-340, 1970.
  • [3] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and x-ray photography. Journal of Theoretical Biology, 29(3):471-481, 1970.
  • [4] G. Levi and U. Moritanari. A grey-weighted skeleton. Information and Control, 17:62-91, 1970.
  • [5] P. Gilbert. Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology, 36(1):105-117, 1972.
  • [6] A. Rosenfeld. Fuzzy digital topology. Information and Control, 40(1):76-87. 1979.
  • [7] A. Rosenfeld. The fuzzy geometry of image subsets. Pattern Recognition Letters, 2:311-317, 1984.
  • [8] J. Canny. A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6):679-698, November 1986.
  • [9] J. Kittler and J. Illingworth. Minimum error thresholding. Pattern Recognition, 19(1):41-47, 1986.
  • [10] J. Dubochet, M. Adrian, J.-J. Chang, J.-C. Homo, J. Lepault, A. McDowall, and P. Schutz. Cryoelectron microscopy of vitrified specimens. Quarterly reviews of biophysics. 21(2):129-228, 1988.
  • [11] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(7):629-639, 1990.
  • [12] L. J. Harris, S. B. Larson, K. W. Hasel, J. Day, A. Greenwood, and A. McPherson. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature, 360:369-372, 1992.
  • [13] L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. on Image Processing. 2(2):176-201, 1993.
  • [14] G. Borgefors. On digital distance transforms in three dimensions. Computer Vision and Image Understanding, 64(3):368-376, 1996.
  • [15] U. Skoglund, L. Ofverstedt, R. Burnett, and G. Bricogne. Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus. Journal of Structural Biology, 117:173-188, 1996.
  • [16] M. Laing. An introduction to the scope, potential and applications of x-ray analysis. International Union of Crystallographers Teaching Pamphlets, 1997.
  • [17] K. H. Roux. Immunoglobulin structure and function as revealed by electron microscopy. International Archives on Allergy and Immunology. 120(2):85-99, 1999.
  • [18] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig. I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research, 28(1):235-242, 2000.
  • [19] J. Böhm, A. S. Frangakis, R. Hegerl, S. Nickell, D. Typke, and W. Baumeister. Toward detecting and identifying macromolecules in a cellular context: Template matching applied to electron tomograms. Proc. of the National Academy of Sciences (PNAS). 97(26):14245-14250, 2000.
  • [20] B. M. Carvalho, E. Garduno, and G. T. Herman. Multiseeded fuzzy segmentation on the face centered cubic grid. In Proc. of the 2nd International Conference on Advances in Pattern Recognition, pages 339-348, 2001.
  • [21] A. Frangakis, J. Böhm, F. Förster, S. Nickell, D. Nicastro, D. Typke, R. Hegerl, and W. Baumeister. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. of the National Academy of Sciences (PNAS), 99(22):14153-14158, 2002.
  • [22] J. Frank. Single particle imaging of macromolecules by cryo-electron microscopy. Annual Review of Biophysics and Biomolecular Structure, 31:303-319, 2002.
  • [23] P. K. Saha, F. W. Wehrli, and B. R. Gornberg. Fuzzy distance transform: theory, algorithms, and applications. Computer Vision and Image Understanding. 86(3):171-190, 2002.
  • [24] N. Volkmann. A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. Journal of Structural Biology, 138:123129, 2002.
  • [25] C. Birchmeier, W. Birchmeier, E. Gherardi, and G. F. V. Woude. Met. metastasis, motility and more. Nature Reviews Molecular Cell Biology, 4:915-925, 2003.
  • [26] J. K. Udupa and P. K. Saha. Fuzzy connectedness and image segmentation. Proc. of the IEEE, 91(10):16491669, 2003.
  • [27] L. Bongini, D. Fanelli, F. Piazza, P. De Los Rios, S. Sandin, and U. Skoglund, Freezing immunoglobulins to see them move. Proc. of the National Academy of Sciences (PNAS), 101(17):6466-6471, 2004.
  • [28] S. Sandin, L. Öfverstedt, A. Wikström, Ö. Wrange, and U. Skoglund. Structure and flexibility of individual iminunoglobulin G molecules in solution. Structure, 12:409-415, 2004 .
  • [29] V. Lucic, F. Förster, and W. Baumeister. Structural studies by electron tomography: From cells to molecules. Annual Review of Biochemistry, 74:833-865. 2005.
  • [30] S. H. W. Scheres, R. Marabini, S. Lanzavecchia, F. Cantele, T. Rutten, S. D. Fuller, J. M. Carazo, R. M. Burnett, and C. San Martin. Classification of single-projection reconstructions of cryo-electron microscopy data of icosahedral viruses. Journal of Structural Biology, 151:79-91, 2005.
  • [31] Z. Yu and C. Bajaj, Automatic ultrastructure segmentation of reconstructed cryoEM maps of icosahedral viruses. IEEE Trans. on Image Processing, 14(9):1324-1337, 2005.
  • [32] M. Gedda and S. Svensson. Fuzzy distance based hierarchical clustering calculated using the A algorithm. In Proc. of the 11th International Workshop on Combinatorial Image Analysis, volume 4040 of LNCS, pages 101-115, 2006.
  • [33] E. Gherardi, S. Sandin, M. V. Petoukhov, J. Finch, M. E. Youles, L.-G. Öfverstedt, R. N. Miguel, T. L. Blundell, G. F. Vande Woude, U. Skoglund, and D. I. Svergun. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc. of the National Academy of Sciences (PNAS), 103(11):4046-4051, 2006.
  • [34] K. Grunewald and M. Cyrklaff. Structure of complex viruses and virus-infected cells by electron cryo tomography. Current Opinion in Microbiology, 9(4):437-442, 2006.
  • [35] A. P. Leis, M. Beck, M. Gruska, C. Best, R. Hegerl, W. Baumeister, and J. W. Leis. Cryo-electron tomography of biological specimens. IEEE Signal Processing Magazine, 23(3):95-103, 2006.
  • [36] J. O. Ortiz, F. Förster, J. Kurner, A. A. Linaroudis, and W. Baumeister. Mapping 70s ribosomes in intact cells by cryoelectron tomography and pattern recognition. Journal of Structural Biology, 156(2):334-341, 2006.
  • [37] S. Svensson, M. Gedda, D. Fanelli, U. Skoglund, L.-G. Öfverstedt, and S. Sandin. Using a fuzzy framework for delineation and decomposition of immunoglobulin G in cryo electron tomographic images. In Proc. of the 18th International Conference on Pattern Recognition, volume 4, pages 687-690. IEEE Computer Society, 2006.
  • [38] C. Best, S. Nickell, and W. Baumeister. Localization of protein complexes by pattern recognition. Methods Cell Biology, 79:615-638, 2007.
  • [39] S. Svensson. A decomposition scheme for 3D fuzzy objects based on fuzzy distance information. Pattern Recognition Letters, 28(2):224-232, 2007.
  • [40] L. Bongini, D. Fanelli, S. Svensson, M. Gedda, F. Piazza, and U. Skoglund. Resolving the geometry of biomolecules imaged by cryo electron tomography. Journal of Microscopy, 228:174-184, 2007.
  • [41] M. Gedda and S. Svensson. Flexibility description of the met protein stalk based on the use of non-uniform b-splines. In Proc. of the 12th International Conference on Computer Analysis of Images and Patterns, volume 4673 of LNCS, pages 173-180. Springer, 2007.
  • [42] H. Rullgård, O. Öktem, and U. Skoglund. A componentwise iterated relative entropy regularization method with updated prior and regularization parameter. Inverse Problems, 23:2121-2139, 2007.
  • [43] D. Fanelli and O. Öktem. Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem. Inverse Problems, 24:013001, 2008.
  • [44] E. Garduño, M. Wong-Barnum, N. Volkmann, and M. H. Ellisman. Segmentation of electron tomographic data sets using fuzzy set theory principles. Journal of Structural Biology, 162(3):368-379, 2008.
  • [45] R. Narasimha, I. Aganj, A. E. Bennett, M. J. Borgnia, D. Zabransky, G. Sapiro, S. W. McLaughlin, J. L. S. Milne, and S. Subramaniam. Evaluation of denoising algorithms for biological electron tomography. Journal of Structural Biology, 164(1):7-17, 2008.
  • [46] A. Leis and B. Rockel and L. Andrces and W. Baumeister. Visualizing cells at the nanoscale. Trends in Biochemical Sciences, 34(2):60-70, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0039-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.