PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porównanie technik spektroskopii FTIR stosowanych do identyfikacji materiału biologicznego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Comparison of FTIR spectroscopy techniques used for biological material identification
Języki publikacji
PL
Abstrakty
PL
Spektroskopia podczerwieni FTIR była wielokrotnie demonstrowana przez liczne zespoły badawcze jako jedna z głównych metod identyfikacji i klasyfikacji materiału biologicznego, jakim są żywe bakterie oraz ich spory. W niniejszej pracy porównano techniki, którymi dysponuje spektroskopia FTIR: klasyczną technikę transmisyjną, technikę wielokrotnego wewnętrznego odbicia - Horizontal Attenuated Total Reflectance (HATR) oraz technikę dyfuzyjnego rozproszenia - Diffuse Reflectance Infrared Fourier Transform (DRIFT). Powyższe techniki zastosowano do analizy materiału biologicznego: bakterii i ich sporów, podłoża dla bakterii, pyłków, aminokwasów i białek. Stwierdzono powtarzalność wyników badań tej samej substancji wykonanych trzema technikami. Techniki HATR i DRIFT mogą stanowić alternatywę do tradycyjnej techniki transmisyjnej ze względu na możliwość bezpośredniego pomiaru materiału biologicznego bez wcześniejszej obróbki. Na podstawie analizy widm uzyskanych za pomocą HATR i DRIFT popartej dodatkowo analizą statystyczną - analizą głównych składowych (PCA), stwierdzono przydatność technik w rozróżnianiu żywych bakterii od ich form przetrwalnikowych oraz podłoża.
EN
Abstract. as spores and vegetative cells has been demonstrated by several laboratories using FTIR spectroscopy. In the present work three techniques of FTIR spectroscopy have been discussed: classical transmission techniques using transmission mode, Diffuse Reflectance Infrared Fourier Transform (DRIFT), and Horizontal Attenuated Total Reflectance (HATR). Different groups of biological material have been measured: vegetative cells of bacteria, bacterial spores, background materials, pollens, aminoacids, and proteins. Spectra of the same material achieved using three different FTIR techniques were similar to each other. Main advantage of HATR and DRIFT in comparison with a transmission mode is minimum sample preparation of biological material. These results also demonstrate that FTIR techniques in combination with statistical Principal Component Analysis (PCA) provide rapid and reliable distinction between vegetative bacteria, bacterial spores, and background particles.
Słowa kluczowe
Rocznik
Strony
239--257
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. S. Kaliskiego 2
Bibliografia
  • [1] R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance - absorbance Fourier transform infrared spectroscopy and artificial neural networks, FEMS Microbiol. Lett., 140, 1996, 233-239.
  • [2] N. Valentine, T. Johnson, Yin-Fong Su J. Forrester, Rapid bacterial identification with medical and security applications, SPIE Defense & Security DOI: 10.1117/2.1200701.0559.
  • [3] K. L. Wahl, S. C. Wunschel, K. H. Jarman, N. B. Valentine, C. E. Petersen, M. T. Kingsley, K. A. Zartolas, A. J. Saenz, Analysis of microbial mixtures by matrix - assisted laser desorption/ionization time of flight mass spectrometry, Anal. Chem., 74, 24, 2002, 6191-6199.
  • [4] C. Fenselau, P. A. Demirev, Characterization of intact microorganisms by MALDI mass spectrometry, Mass Spectrom. Rev., 20, 4, 2001, 157-171.
  • [5] J. B. Cliff, K. H. Jarman, N. Valentine, S. L. Golledge, D. J. Gaspar, D. S. Wunschel, K. L. Wahl, Differentation of spores of Bacillus subtilis grown in different media by elemental characterizatin using time of flight secondary ion mass spectometry, Appl. Environ. Microbiol., 71, 11, 2005, 6524-6530.
  • [6] A. P. Esposito, C. E. Talley, T. Huser, C. W. Hollars, C. M. Schaldach, S. M. Lane, Analysis of single Bacterial spores by Micro - Raman Spectroscopy, Appl. Spectrosc., 57, 7, 2003, 868-871.
  • [7] R. Manoharan, E. Ghiamati, S. Chadha, W. H. Nelson, Effect of cultural conditions on deep UV Resonance Raman Spectra of bacteria, Appl. Spectrosc., 47, 12, 1993, 2145-2150.
  • [8] S. Farquharson, C. Brouillette, W. Smith, Identifying bacterial spores and anthrax hoax materials by Raman Spectroscopy, Proc. of SPIE 5585, 2004, 65-70.
  • [9] Z. Filip, S. Herrmann, J. Kubat, FTIR spectroscopic characteristics of differently cultivated Bacillus subtilis, Microbiol. Res., 159, 3, 2004, 257-262.
  • [10] P. Giesbrecht, D. Naumann, H. Labischinski, G. Barnickel, A new method for the rapid identification and differentation of pathogenic microorganisms using Fourier Transform Infrared Spectroscopy, Rapid Methods and Automation in Microbiology and Immunology, Springer, Berlin, 1985, 198-206.
  • [11] D. Helm, H. Labischinski, G. Schallehn, D. Naumann, Classification and identification of bacteria by Furier - Transformed Infrared spectroscopy, J. Gen. Microbiol., 137, 1991, 69-79.
  • [12] J. Irudayaraj, H. Jang, S. Sakhamuri, Differentation and detection of microorganisms using Furier Transform Infrared Photoacustic Spectroscopy, J. Molec. Struct., 606, 2002, 181-188.
  • [13] D. Naumann, D. Helm, H. Labischinski, Microbiological characterisations by FTIR Spectroscopy, Nature, 351, 6321, 1991, 81-82.
  • [14] S. E. Thompson, N. S. Foster, T. J. Johnson, N. B. Valentine, J. E. Amonette, Identification of Bacterial Spores using Statistical Analysis of Fourier Transform Infrared Photoacoustic Spectroscopy Data, Appl. Spectrosc., 57, 8, 2003, 893-899.
  • [15] R. Goodcare, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGovern, B. K. Alsberg, D. B. Kell, N. A. Logan, Detection of the dipicolinic acid biomarker in Bacillus spores using Curie - Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy, Anal. Chem., 72, 2000, 119-127.
  • [16] A. C. Samuels, A. Ben-David, D. M. Wong, D. St. Amant, L. Carey, V. Kalasinsky, G. Meyer, Infrared spectra of Bacillus subtilis spores: The effect of growth media, Joint Scientific Conference on Chemical & Biological Defense Research, Marriott's Hunt Valley Inn, Hunt Valley, MD, 2001.
  • [17] N. S. Foster, S. E. Thompson, N. B. Valentine, J. E. Amonette, T. J. Johnson, Identification of Sporulated and Vegetative Bacteria using Statistical Analysis of Fourier Transform Mid – Infrared Transmission Data, Appl. Spectrosc., 58, 2, 2004, 203-211.
  • [18] J. L. R. Arrondo, A. Muga, J. Castresana, F. M. Goni, Quantitative studies of the structure of proteins in solution by Fourier - transform infrared spectroscopy, Prog. Biophys. Mol. Biol., 59, 1993, 23-56.
  • [19] F. Siebert, Infrared spectroscopy applied to biochemical and biological problems, Methods Enzymol., 246, 1995, 501-526.
  • [20] M. Jackson, H. H. Mantsch, The use and misuse of FTIR spectroscopy in the determination of protein structure, Crit. Rev. Biochem. Mol. Biol., 30, 1995, 95-120.
  • [21] E. Goormaghtigh, V. Cabiaux, J. M. Ruysschaert, Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds, Subcell, Biochemistry, 23, 1994, 329-362.
  • [22] E. Goormaghtigh, V. Cabiaux, J. M. Ruysschaert, Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange, Subcell. Biochem., 23, 1994, 363-403.
  • [23] E. Goormaghtigh, V. Cabiaux, J. M. Ruysschaert, Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures, Subcell. Biochem., 23, 1994, 405-450.
  • [24] J. L. R. Arrondo, F. M. Goni, Structure and dynamics of membrane proteins as studied by infrared spectroscopy, Prog. Biophys. Mol. Biol., 72, 1999, 367-405.
  • [25] P. I. Haris, D. Chapman, Does Fourier - transform infrared spectroscopy provide useful information on protein structures, TIBS 17, 1992, 328-333.
  • [26] P. I. Haris, D. Chapman, Analysis of polypeptide and protein structures using Fourier transform infrared spectroscopy, in: C. Jones, B. Mulloy, A. H. Thomas (eds.), Microscopy, Optical Spectroscopy, and Macroscopic Techniques ed., vol. 22, Methods in Molecular Biology, Humana Press Inc, Totowa, NJ, 1994, 183-202.
  • [27] H. Fabian, W. Mäntele, Infrared spectroscopy of proteins, in: J. M. Chalmers, P. R. Griffiths (eds.), Handbook of Vibrational Spectroscopy, John Wiley & Sons, Chichester, 2002, 3399-3426.
  • [28] A. Barth, IR spectroscopy, in: V. N. Uversky, E. A. Permyakov (eds.), Protein Structures: Methods in Protein Structure and Stability Analysis, Nova Science Publishers, 2006.
  • [29] A. Barth, Infrared spectroscopy of proteins, Bioch. et Biophys. Acta, 1767, 2007, 1073-1101.
  • [30] N. Valentine, T. Johnson, Yin-Fong Su J. Forrester, FTIR Spectroscopy for bacterial spore identification and classification, Proc. of SPIE, 6378, 2006, 63780P-1.
  • [31] Diffuse Reflectance Accessory; User's Guide, Copyright © 1998 The Perkin-Elmer Corporation United Kingdom.
  • [32] Horizontal ATR Accessory; User's Guide, Copyright © 1998 The Perkin-Elmer Corporation United Kingdom.
  • [33] Bojidarka B. Ivanova, IR - LD spectroscopic characterization of l-Tryptophan containing dipeptides, Spectrochimica, Acta, Part A, 64, 2006, 931-938.
  • [34] L. C. Snoek, R. T. Kroemer, M. R. Hockridge, J. P. Simons, Phys. Chem., 3, 2001, 1819.
  • [35] X. Cao, G. Fischer, J. Phys. Chem., A 103, 1999, 9995.
  • [36] P. J. Reid, Ch. Loftus, C. C. Beeson, Biochemistry, 42, 2003, 2441.
  • [37] J. A. Encinar, A. M. Fernandez, M. L. Molina, A. Molina, J. A. Poveda, J. P. Albar, J. Lopez-Barneo, F. Gavilanes, A. V. Ferrer-Montiel, J. M. Gonzalez-Ros, Biochemical, 41, 2002, 12263.
  • [38] Z. Arp, D. Autrey, J. Laane, S. A. Overman, G. J. Thomas Jr., Biochemical, 40, 2001, 2522.
  • [39] M. Tsuboi, Y. Ezaki, M. Aida, M. Susiki, A. Yimit, K. Ushizawa, T. Ueda, Biospectroscopy, 4, 1998, 61.
  • [40] R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe metody identyfikacji związków organicznych, PWN, Warszawa, 2007, 72-126.
  • [41] K. Joung, J. Coté, A single Phylogenetic Analysis of Bacillus thuringiensis strains and bacili species infrarred from 16S rRNA generestriction fragment length polymorphism is congruent with two independent phylogenetic analyses, J. Appl. Microbiol., 93, 2002, 1075-1082.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0029-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.