PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Określenie dynamicznej granicy plastyczności materiału penetratora wykonanego ze spieku na osnowie wolframowej metodą Taylora

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Estimation of yield stress in tungsten rods at high strain-rates using Taylor's impact technique
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wyniki dynamicznych badań wytrzymałościowych spieków na osnowie wolframowej (stanowiących materiał konstrukcyjny penetratorów pocisków APFSDS-T) metodą testu Taylora. Na podstawie otrzymanych eksperymentalnych wyników badań dynamicznych stwierdzono, że w obliczeniach numerycznych można stosować wartości dynamicznej granicy plastyczności materiału penetratora w zakresie 2100-3000 MPa.
EN
In this paper, we present the estimation of yield stress in tungsten rods at high strain-rates using Taylor's impact. The results of this test showed that the yield stress in tungsten rods achieved 2100-3200 MPa for the impact velocity of about 130-150 m/s. The experimental results will be used for computer analyses of the armour penetration process by tungsten penetrators.
Rocznik
Strony
297--311
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. S. Kaliskiego 2
Bibliografia
  • [1] G. Taylor, The use of flat - ended projectiles for determining dynamic yield stress I. Theoretical considerations, Proc. Roy. Soc. London Series A, 1948, 194, 289.
  • [2] A. C. Whiffen, The use of flat-ended projectiles for determining dynamic field stress II. Tests on various metallic materials, Proc. Roy. Soc. London Series A, 1948, 194, 300.
  • [3] E. H. Lee, S. J. Tupper, Analysis of plastic deformation in a steel cylinder striking a rigid target, J. Appl. Mech., Trans. ASME, 1954, 21, 63.
  • [4] J. B. Hawkyard, A theory for the mushrooming od flat - ended projectiles impacting on flat rigid anvil, using energy consideratios, Int. J. Mech. Sci., 1969, 11, 313.
  • [5] J. B. Hawkyard, D. Easoton, W. Johnson, The mean dynamic yield strenghof copper and low carbon steel at elevated temperatures from measurements of the "mushrooms" of flat - ended projectiles, Int. J. Mech. Sci, 1968, 10, 929.
  • [6] G. I. Barenblatt, A. I. Ishlinskii, On the impact of viscoplastic bar on rigid wall, Prokl. Math. Mekh., 1962, 26, 497.
  • [7] T. C. T. Ting, Impact of nonlinear viscoplastic rod on a rigid wall, J. Appl. Mech. Trans. ASME, 1966, 33, 505.
  • [8] M. I. Hutchings, estimation of yield stress in polymers a high strain-rates using G. I. Taylor's impact technique, J. Mech. Phys. Solids, 1979, 26, 289.
  • [9] L. L. Wilson, J. W. House, M. E. Nixon, Time resolved deformation from the cylinder impact tests, AFSTL-TR-89-76, November 1989.
  • [10] G. R. Johnson, T. J. Holmquist, evaluation of cylinder - impact test data for constitutive model constants, J. Appl. Phys., 1988, 64, 3901.
  • [11] P. J. Maudin, R. F. Davidson, R. J. Henninger, Implementation and assessment of the mechanical – threshold - stress model using the EPIC2 and PINON computer codes, Los Alamos National Laboratory report LA-11895-MS, September 1990.
  • [12] S. E. Jones, P. P. Gillis, J. C. Foster Jr., On the equation of motion of the undeformed section of a Taylor impact specimen, J. Appl. Phys., 1987, 61, 499.
  • [13] S. E. Jones, P. P. Gillis, J. C. Foster Jr., L. L. Wilson, A one dimensional two phase flow model for Taylor impact specimens, J. Engr. Mat. ls. Tech. Trans. ASME, 1991, 113, 228.
  • [14] J. D. Cinnamon, S. E. Jones, J. C. Foster Jr., P. P. Gillis, An analysis of early time deformation rate and stress in the Taylor impact test, Mechanical Behavior of Materials-VI. Proc. Of the Sixth int. Materials Conf., Kyoto, Japan, July 1991, vol. 1, eds. M. Jano and T. Inouc, 1991, 337.
  • [15] S. E. Jones, P. J. Maudin, P. P. Gillis, J. C. Foster Jr., An analytical interpretation of high strain rate materials behavior during early time plastic deformation in the Taylor impact test, Computers Engineering, ed. G. A. Gabriele, vol. 2, ASME, New York, 1992, 173.
  • [16] P. P. Maudin, J. C. Foster Jr., S. E. Jones, On the Taylor test, Part III: A continuum mechanics code analysis of plastic wave propagation, Los Alamos National Laboratory report LA-12836-MS, November 1994.
  • [17] J. C. Foster Jr., P. P. Maudin, S. E. Jones, On the Taylor test, Part I: A continuum analysis of plastic wave propagation, Proc. Of the 1995 ASP Topical Conf., An Shock Compression of Condensed Matter, Seattle, Washington, August 1995, 291.
  • [18] P. P. Maudin, J. C. Foster Jr., S. E. Jones, An engineering analysis of plastic wave propagation in the Taylor test, Int. J. Impact Engng., 1997, 19, 95.
  • [19] N. Cristescu, Dynamic plasticity, North-Holland, Amsterdam, 1967.
  • [20] M. A. Meyers, Dynamic behavior of materials, Johns Wiley and sons, INC, New York-Chichester-Brisbane-Toronto-Singapoure, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0028-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.