
BIULETYN WAT
VOL. LVIII, NR 2, 2009

An application of the genetic algorithm 
to optimize location of buoys
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Abstract. Th e paper addresses the problem of building an automatic, spare, radar system to coastal 
navigation. To fi x position, the system uses the information about buoys surrounding the ship. 
Accuracy of the system depends on many factors. One of them is the way of locating buoys on the 
given area of the sea. To make the task of the system easier and to make the position fi xed by the 
system more accurate, the buoys should be appropriately arranged. Th e paper suggests the solution 
based on genetic algorithms to arrange the buoys. Th e solution proposed was tested experimentally 
and results of the tests are presented at the end of the paper. 
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1. Introduction

Th ere are a few concepts of automating radar navigation [6, 7, 8, 9]. One of 
them is based on a system of self buoys, i.e., buoys recognizable by the positioning 
system (Th e problem of diff ering self buoys from other buoys is presented among 
other things in [10]). To fi x position the system determines a vector of distances 
(and optionally bearings) to all self buoys surrounding the ship, using radar for that 
purpose. Th e vector of distances fi xed by the system is passed on to appropriately 
prepared artifi cial neural network. Th e task of the network is to fi x position of the 
ship. 

Generally, the task of the network can be viewed as approximation of a position 
function defi ned as follows:

 : ,DF V P→  (1)
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where: n
DV ⊂ ℜ  — the set of vectors of the size n including distances 

 (and optionally bearings) to buoys;
  P — the set of points in geographical coordinate system, i.e., the set 

 of points in the following form ( ),φ λ , where φ  is the latitude and λ
 is the longitude.

Accuracy of approximating the function above strongly depends on its shape. 
Th e more the function is undulated, the greater diffi  culties with its approximation. 
To make the task of the network easier and to make the position fi xed by the network 
more accurate, the shape of the position function should be possibly the easiest. 
Since the shape of the position function depends on mutual arrangement of buoys, 
it can be easily modifi ed through moving buoys into diff erent places. However, the 
problem is how to arrange buoys to obtain fl at, easy shape of the function. To solve 
this problem, diff erent methods can be used. Some of them, suggested in the paper, 
are genetic algorithms (GAs). To test GAs in the problem of arranging the buoys, 
simple experiments were performed. In the experiments, classical Canonical GA 
(CGA) [3, 4, 13] and Eugenic Algorithm (EuA) [1, 5, 11] were used. Th e task of the 
algorithms was to arrange ten buoys on a virtual area of the sea of the size 10 × 10. 
To evaluate arrangements, they were used to create positioning neural networks 
which, then, were tested in terms of accuracy of position generated in testing points 
of the considered research stretch. In the experiments, arrangements generated by 
GAs were compared to random arrangements. 

Th e paper is organized as follows: section 2 is a short presentation of the 
positioning system; section 3 is a description of the problem of arrangement 
of the buoys; section 4 is a description of evolutionary techniques used to solve 
the problem mentioned, section 5 is a report from the experiments; and section 
5 is a summary.

2. Th e concept of the positioning system

Th ere are three key elements of the system: radar, the system of self buoys, 
and positioning neural network. Radar is a common device on every ship used to 
measure distance and bearing to diff erent objects. Th e information about objects 
and generally the information about world surrounding a ship is presented in 
a radar screen. Additionally, the information about objects is transmitted outside 
radar. Most currently used radars generate the message formatted according to 
NMEA 0183 (the standard established by National Marine Electronics Association) 
standard. Th e message includes all the information required by the system, i.e., 
the information about distances (and optionally bearings) to all objects visible by 
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means of radar. With regard to buoys, they are present on almost every stretch 
to facilitate navigation. In our case, the buoys have to have three basic features. 
First, they cannot change position over time (the so-called super-buoys). Second, 
they have to be visible by means of radar (each buoy has to be equipped with the 
so-called racon, i.e., a device to refl ect radar waves). Th ird, all the buoys have to 
be recognizable by the system, i.e., they have to be diff erentiable from other buoys 
occurring on the given area of the sea. To diff er the self buoys from other buoys, 
ideas from artifi cial immune systems can be used [10]. Th e third element of the 
system is approximating neural network. At present, to approximate position, two 
General Regression Neural Networks (GRNNs) are used. Th e fi rst one is used to 
approximate the latitude while the second one to approximate the longitude. Both 
GRNNs implement the following function:
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where: ( ),  f x σ — the value of approximated function in the point x 
 (in our case f is one of unknown coordinates of the ship, i.e., φ  or λ , 

  whereas x is the vector of distances to buoys fi xed in the position ( φ , λ ));
  σ— the parameter;
  Wk — the true value of the function f in the training point xk 

 (in our case Wk is the value of either φ  or λ );
  xk — kth training point (in our case the sample vector of distances 

 to buoys for which we know accurate position of the ship);
  Z — the number of training points.

To prepare the networks to work we should have at our disposal the set of 
training points in the form ( kv , kφ , kλ ), k = 1…Z, where vk is the vector recorded 
in the point ( kφ , kλ ) including distances to buoys. All the training points can be 
produced in a laboratory, on a personal computer. Th ere is no necessity to perform 
any measurements at sea what is the great advantage of the presented system.

Th e system works as follows. At the beginning, self buoys are selected from 
among all buoys visible on a stretch. Next, all self buoys are ordered according to 
North-South direction. In the following step, the vector of the size n (at each point 
in time at most n buoys can be visible by means of radar; the fi eld of vision of radar 
is restricted to the area determined by the range of radar observation R) including 
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distances to self buoys is created. At the beginning of the vector distances to North-
most buoys are stored. Distances to South-most buoys are at the end of the vector. 
When fewer than n self buoys are visible on a stretch, the end of the vector is fi lled 
in with zeros. Th e last activity of the system is activation of approximating neural 
networks. Th e networks fi x position of a ship based on the vector of distances 
prepared beforehand. Illustration of the system is presented in Fig. 1. 

Fig. 1. Th e concept of the system

Th e greatest advantages of the system described above are simplicity in creating 
and autonomy, i.e., independence on outside sources of information. Th e latter 
feature is particularly important in the case of military ships. 

3. Optimization of locating the buoys

Th e most important evaluating criterion of a positioning system is its accuracy. 
Accuracy of approximating the position function by means of GRNN depends on 
the value of σ  and on training points used to create the network. Th e fi rst step 
to adjust an initially created GRNN to a task is to tune the value of σ . Th e only 
method to improve performance of the network when the value of σ is fi xed and 
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results of the network are still unsatisfactory is to add next training points. Th e 
newly introduced points should come from areas where the greatest errors of the 
position occur. Th e additional points on the one hand enhance performance of 
the network but on the other hand extend the calculating time necessary to fi x 
a position (in our case we deal with soft ware, sequential implementation of GRNNs). 
Accordingly, we cannot simply add next training points to make the system more 
accurate. Too many training points used to create positioning GRNNs can make 
them too slow and thereby unpractical. Th e solution to this problem is to facilitate 
the position function. Th e simpler the shape of a function, the fewer training points 
necessary to accurately approximate it. In the case of the position function to make 
it fl at and easy to approximate similar vectors of distances should correspond to 
similar positions. Moreover, diff erent vectors should represent diff erent positions. 
Th e only method to achieve such eff ect is to appropriately arrange the buoys (each 
change in locating the buoys induces a change of the shape of the position function). 
To accomplish the fl at shape of the position function, the buoys should be arranged 
so as to minimize the following evaluation function: 
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where: 1 1 2 2, , , , , ,n na φ λ φ λ φ λ= …  — the vector including positions of n self 
 buoys (the arrangement of buoys);

  m — the number of points uniformly distributed on the stretch 
 and used to evaluate arrangements of buoys;

  ijd  — the normalized distance between the ith and the jth point 
 of the stretch;

  
*
ijd  — the normalized Euclidean distance between the ith vector 

 (including distances to buoys) representing the ith point of the stretch 
 and the jth vector representing the jth point of the stretch.

In the experiments reported further, to create arrangements of buoys we used 
two types of GAs, i.e., CGA and EuA. To evaluate created arrangements both 
algorithms used the following fi tness function:
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In the following sections, both types of GAs mentioned above are described. 
Th e description of GAs is preceded by a brief introduction to GAs itself.
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4. Genetic algorithms

Genetic algorithms are a class of search, stochastic, population based algorithms 
drawing inspiration from ideas and principles of natural evolution. All of them 
operate according to the following simplifi ed procedure.

Fig. 2. Th e pseudocode of GA

genetic_algorithm()
{

t:=0;

generate initial population at random;

evaluate population;

do{
select parental individuals from population for reproduction;

apply operators to selected individuals and generate offspring;

evaluate offspring;

replace some parents with some offspring;

t:=t+1;

}while(termination criterion is satisfied)

}

At fi rst, random population of individuals, represented as binary strings, is 
generated. Th e whole population is then evaluated, i.e., a measure of goodness, 
called fi tness, is assigned to each individual. In the next step, some individuals from 
the population are selected. Selection of individuals for reproduction is performed 
by means of one out of the three main selection schemes: proportional, ranking 
and tournament selection scheme [2, 3]. All the schemes mentioned present the 
philosophy of selection according to which better individuals have greater chance to 
be selected than the worse ones. Th e chosen individuals become parents of newborn 
off spring and they undergo diff erent genetic operators. In Gas, the most frequently 
used genetic operators are crossover and mutation [2, 3]. Th e crossover operator 
recombines genetic material from two parental chromosomes creating off spring 
chromosome. Th e mutation introduces random changes into chromosome fl ipping 
some of its bits (genes) to their opposite state. In GAs, the key operator is crossover 
[3]. Th e mutation usually plays supporting role.

Each new individual generated by means of the genetic operators described 
above is then evaluated, i.e., each of them receives fi tness. Th e next activity of 
GA is to replace parents with off spring. Th is way we obtain a new population of 
individuals which depending on the replacement strategy contains either newly 
generated individuals or both parents and children. Th e new population undergoes 
the same evolutionary procedure as the previous population, i.e., individuals are 
selected for reproduction, diff erent operators are applied regarding individuals 
selected, off spring is generated, evaluated and fi nally the next population arises. 
Th is procedure is repeated until some stopping criterion is satisfi ed. 
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4.1. Canonical Genetic Algorithm

In principle, functioning of CGA was already explained in the previous section. 
To fully defi ne CGA, it is only enough to present in detail such elements as: the way 
of selecting individuals for reproduction and functioning of the basic GA operators, 
i.e., crossover and mutation. 

As noted above, there are three diff erent strategies with regard to selection 
of parental individuals: proportional, ranking and tournament selection. Since, 
in the experiments, reported further, only the tournament selection was used, we 
decided to describe only this type of selection. In order to select individuals for 
reproduction, the tournament selection organizes a cycle of tournaments. Each 
tournament takes place with participation of a slight number of randomly selected 
individuals from the entire population. Selecting individuals for the tournament 
is uniform. Each tournament ends with selecting the winner individual who is 
better than the remaining individuals taking part in the tournament. Th e winner 
individual is, then, as the only individual taking part in the tournament, introduced 
into newly created population. In order to fi ll newly created population out it is 
necessary to repeat the tournament many times. 

Th e next issue that requires to be explained in detail is functioning of the basic 
GA operators, i.e., crossover and mutation. Th e task of the former is to exchange 
genetic material between individuals. Th e latter introduces random perturbations 
into chromosomes. 

Th ere are three basic forms of crossover, i.e., one-point, two-point and uniform 
crossover [12, 13]. One-point crossover, used in the experiments, cuts two parental 
chromosomes into two segments. Th e left  segment from the fi rst chromosome 
is, then, attached to the right segment of the second chromosome producing 
the fi rst off spring. Th e same procedure, as above, is applied in relation to the 
remaining unattached segments from both chromosomes. In this way, the second 
off spring arises. Two-point crossover works similarly. However, this time parental 
chromosomes are cut in two places. To produce off spring two-point crossover 
swaps central segments of both chromosomes. Th e third version of crossover is 
uniform crossover. It exchanges corresponding bits from both chromosomes with 
the probability 0.5. All types of crossover are depicted in Fig. 3.

Th e next evolutionary operator used in CGA is mutation. As noted above, 
mutation is rather supporting operator in relation to crossover. Nevertheless, 
functioning of CGA without this operator is rather impossible. Mutation helps in 
the exploration of unknown regions of genotype space. Lack of this operator may 
cause CGA to be not able to produce new, perhaps useful combinations of bits. 
Mutation is simple operator since it randomly fl ips bits from a chromosome to their 
opposite state. Th e course of action of mutation is presented in Fig. 4.
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In the experiments reported further, we used CGA with tournament selection, 
one-point crossover (the form of crossover used in the experiments always produced 
off spring of the same length as parents), and mutation. 

4.2. Eugenic Algorithm

Th e next GA used in the experiments is Eugenic Algorithm (EuA). Th e main 
diff erence between CGA and EuA is a way of constructing off spring. In order to 
generate off spring CGA always uses two parents, i.e., it applies sexual reproduction. 
In EuA, a single off spring is created based on the information included in the whole 
population of individuals. Each individual from the population can aff ect the form of 
the newborn off spring. However, better individuals have greater chance to introduce 
their genetic material into off spring than worse individuals. Th e pseudocode of 
EuA is presented in Fig. 5 [11].

In short, EuA proceeds as follows. At fi rst, randomly initialized population of 
binary individuals is generated. Th en, a new individual is created. To create the new 
individual, EuA uses a temporary population of individuals, which at the beginning 
is a faithful copy of the original population. Initially, all genes of the new individual 

Fig. 3. Th ree types of crossover: a) one-point crossover; b) two-point crossover; c) uniform crossover

Fig. 4. Mutation
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are unset. In the subsequent steps, the genes are gradually fi xed. First, the most 
signifi cant gene is fi xed, i.e., the gene which seems to have the greatest infl uence 
on fi tness of individuals. To estimate the signifi cance of a gene, EuA uses absolute 
diff erence between mean fi tnesses fi xed for various alleles (allele is the value of 
gene; in GAs allele is from the set {0,1}), i.e., [11]:

 ( ) ( ),1 ,0 ,gS f g f g= −  (6)

where Sg is the signifi cance of the gene g and ( ),f g a  denotes the mean fi tness 
of individuals whose the gene g has allele a assigned. Th e unset gene whose the 
value of Eq. (6) is the greatest is considered to be the most signifi cant. Th e most 
signifi cant gene is the fi rst gene which obtains a value. 

 arg max .gg u
g S∗

∈
=   (7)

In Eq. (7) g* denotes the most signifi cant gene while u is the set of unset genes in 
the newly created individual. Selecting the value of the gene is performed according 
to the following formula [11]:

 
 
 

[ ] ( ) ( )
new

1 if ,1 ,0
0 otherwise,

P g P g
x g

⎧ >
= ⎨
⎩

 

(8)

 
 

( ) ( )
( ){ }'0 ','1'

,
, ,

,
b

f g a
P g a

f g b
∈

=
∑  

(9)

where xnew[g] denotes the value of the gth gene of the newborn individual xnew 
and P(g, a) is the probability of the allele a to be chosen for the gene g. In the next 
step, the gene chosen is removed from the set of unset genes and the temporary 
population is restricted. In order to take a decision about the restriction of the 
population EuA estimates epistasis E, i.e., the level of interdependencies between 
individual genes. Th e estimate is used by EuA to calculate the probability of the 
restriction PR [11].

 max1 ,E D= −  (10)
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If the decision about the restriction is made, each individual whose value of 
the gene g* is diff erent from x[g*] is removed from the temporary population. 

Th e process of creating a new individual described above is performed up to 
the point when all the genes of the individual are fi xed. Once, the new individual 
is completely formed it replaces the worst individual from the original population 
and the process of creating a next new individual starts once again. It is continued 
until some termination criterion is satisfi ed.

5. Experiments 

In the experiments, the task of GAs was to arrange ten buoys (n = 10) on the 
virtual stretch of the size 10 × 10. To evaluate arrangements generated during the 
evolutionary process, GAs used the fi tness function (5) built based on hundred points 
(m = 100) uniformly distributed on the research stretch. Th e best arrangements 

Fig. 5. Th e pseudocode of EuA

eugenic_algorithm()
{

t:=0;

//generate initial population of binary strings at random

pop:=getRandomPop();

while(termination criterion is not satisfied)

{

u:={1,2,...,l};

rpop:=pop;

while(!u->isEmpty())
{

//select the most significant gene g
* out of all genes from u

g
*:=rpop->getTheMostSignificantGene(u);

//set the gene g
* of newborn individual xnew

xnew[g
*]:= rpop->setAllele(g*);

u->removeGene(g*);

//restrict rpop when epistasis of unset genes of xnew is high

//E denotes epistasis while PR is probability of restriction

E:= rpop->getEpistasis(u);

PR:=E;

r:=getRandom(0,1);

if(r<= PR)

rpop:=rpop->restrictPopulation(g*,xnew[g
*]);

}

//repleace the worst individual with the newborn individual

w:= pop->getTheWorstIndividual();

pop->repleaceIndividual(w,xnew);

t:=t+1;

}
}
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produced by GAs were tested as an element of the positioning system. Each selected 
arrangement was tested ten times, i.e., ten diff erent positioning systems (a single 
positioning system consisted of two GRNNs) were produced for each selected 
arrangement. Th e positioning systems created to test a single arrangement diff ered 
in training sets used to produce them. Th e training sets used in the experiments 
included ten, twenty, fi ft y or hundred training points and representing them 
vectors of distances (Z = 10, 20, 50, or 100). Training sets generated for diff erent 
arrangements diff ered only in vectors of distances to buoys. Points in which the 
vectors were recorded were the same for all tested arrangements. All the positioning 
systems created during the experiments were tested in hundred testing points, the 
same for all arrangements. To ultimately evaluate the arrangements, the following 
function was used: 
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where: T — the number of testing points (T = 100);
  P — the number of positioning systems created for a single arrangement 

 (P = 10);
  ( ),j jφ λ  — the accurate position in the jth testing point;

  ( ),i i
j jφ λ  — the position generated by the ith positioning system in the jth 

testing point. 

In the experiments, two GAs, i.e., CGA and EuA, were used to arrange the 
buoys. Both GAs processed arrangements in the form of 2*n size integer vectors 
encoded as binary strings. Each integer from the vector was encoded as binary string 
of size 7 (this means that chromosomes processed by GAs were of size 140 bits). 
Since, the size of the research stretch was 10 × 10, to create arrangements, integers 
from the vectors were scaled to the range <0, 10>. Th e remaining parameters of 
the evolutionary process are presented below:

— the number of individuals in population including arrangements: 100; 
— the number of evolutionary generations: 50 000. 
Parameters of CGA:
— crossover probability: 0.7;
— per-bit mutation probability: 0.03; 
— the size of tournament: 2. 
Parameters of EuA:
— selection noise: 0.01, 0.2;
— creation rate: 0.01, 0.2;
— restriction operator: on.
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In the experiments, arrangements prepared by GAs were compared to random 
arrangements. Generally, there were tested thirty arrangements prepared by means 
of CGA, thirty arrangements generated by EuA, and thirty random arrangements. 
All the results presented in the further part of the paper are averaged.

5.1. Experimental results

Th e experiments showed that appropriate arrangement of buoys improves 
accuracy of the positioning system. However, as to be expected, the improvement 
is only noticeable for a slight number of training points used to create the system. 
Th e more training points the less infl uence of the arrangement of buoys on the 
accuracy of position fi xed by the system.

Table 1
Th e results of the experiments

10 training points 20 training points 50 training points 100 training points
104Fe

E

CGA 1.27 1.14 0.98 0.011 29.8

EuA 1.61 1.45 1.27 0.013 35.9

random 3.86 3.84 2.72 0.012 240.6

Fig. 6. Example arrangements of buoys: a) random arrangement; b), c) arrangements generated by 
CGA; d) arrangement generated by EuA
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With regard to arrangements, it seems that there exists a noticeable diff erence 
between the random arrangements and the arrangements produced by means of 
GAs. While buoys from the random arrangements are usually spread on the whole 
research area, buoys from the arrangements produced by GAs form something 
like a circle. Th e buoys are located around the research area without any buoys in 
the center. 

6. Summary

Th e paper presents the problem of appropriate arrangement of buoys being an 
element of the coastal, radar, positioning system. Th e system fi xes position of a ship 
using for that purpose the information about buoys visible on the given stretch. Th e 
position of a ship is fi xed by appropriately trained, approximating neural network. 
To make the task of the network easier, the buoys should be appropriately arranged. 
In the paper, the experiments are reported in which to arrange the buoys, GAs were 
used. Th e experiments showed that in the case of innumerous training sets used to 
train the positioning network, appropriate arrangement of buoys can improve the 
accuracy of the position fi xed. In the case of training sets including many training 
samples, the eff ect of appropriate arrangement of buoys is less and less noticeable. 
However, the large training sets can also considerably slow down the positioning 
system making it useless.

Received August 21 2008, revised September 2008.
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T. PRACZYK

Zastosowanie algorytmów genetycznych do optymalizacji rozmieszczenia 
oznakowania nawigacyjnego

 Streszczenie. Tematem artykułu jest rozmieszczenie oznakowania nawigacyjnego na akwenach 
przybrzeżnych. Oznakowanie nawigacyjne jest jednym z elementów automatycznego, przybrzeżnego 
systemu nawigacji radarowej a jego rozmieszczenie w sposób decydujący wpływa na dokładność 
pozycji generowanej przez system. W artykule zaproponowano użycie algorytmów genetycznych do 
określenia położenia poszczególnych pław na akwenie. Proponowane rozwiązanie zostało sprawdzone 
eksperymentalnie a wyniki testów zamieszczone zostały na końcu artykułu. 
Słowa kluczowe: optymalizacja, algorytmy genetyczne, nawigacja radarowa
Symbole UKD: 621.396.96


