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Abstract. Assembler Encoding (AE) represents Artifi cial Neural Network (ANN) in the form of 
a simple program called Assembler Encoding Program (AEP). Th e task of AEP is to create the so-
called Network Defi nition Matrix (NDM) including all the information necessary to construct ANN. 
AEPs and in consequence ANNs are formed by means of evolutionary techniques.
To make AE an eff ective tool for creating ANNs it is necessary to appropriately organize all the 
evolutionary processes responsible for generating AEPs, i.e., it is necessary to properly select values of 
diff erent parameters controlling the evolutionary process mentioned. To determine optimal conditions 
of the evolution in AE, experiments in a predator-prey problem were performed. Th e results of the 
experiments are presented at the end of the paper.
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1. Introduction

ANNs constitute a sub-domain of artifi cial intelligence that is broadly used 
to solve various problems in diff erent fi elds (e.g. pattern classifi cation, function 
approximation, optimization, image compression, associative memories, robot 
control problems, etc.). Th e performance of ANNs highly depends on two factors, 
i.e., network’s topology and a set of network’s parameters (typically weights). 
Th erefore, to develop an appropriate network it is necessary to determine the 
architecture and parameters. Th ere are many diff erent ANN learning algorithms 
(e.g. BackPropagation) that change values of parameters leaving the structure 
completely intact. In such a case, the process of searching for the proper network’s 
topology is the task of a network’s designer who arbitrarily chooses the network’s 
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structure, starts network learning and fi nally puts the network to a test. If the result 
of the test is satisfactory, the learning process is stopped. If not, it is continued 
further. Th e designer manually determines the next potential network’s topology 
and runs the learning algorithm again. Such loop — topology determination and 
learning is repeated until the network which is able to carry out a dedicated task 
at an appropriate level is found. At fi rst glance, it is apparent that such a procedure 
could be very time-consuming and, what is worse, in the case of more complex 
problems, can lead to a situation when all chosen and trained networks would be 
incapable of solving the task. 

In addition to the learning concept presented above, there exist other approaches 
that can be called constructive and destructive. Th e constructive ones use a learning 
philosophy that consists in incremental development of ANN starting from small 
architecture. At the beginning, ANN has a small number of components to which 
next components are gradually added until a resultant network fully meets the 
requirements imposed. On the other hand, the destructive ones prepare a large 
fully connected ANN and then try to remove individual elements of the network, 
such as synaptic connections and neurons.

Genetic Algorithms (GAs) are the next technique that has been successfully 
applied to search for optimal ANNs [4, 5, 11] for the recent years. GA processes 
a population of genotypes that typically encode one phenotype although encoding 
several phenotypes is also possible. In evolution of ANNs genotypes there are 
encodings of corresponding networks (phenotypes). Th e evolutionary procedure 
involves selecting genotypes (encoded networks) for reproduction based on their 
fi tness, and then by introducing genetically changed off spring (mutation, crossover 
and other genetic operators) into next population. Repeating the whole procedure 
over many generations causes the population of encoded networks to gradually 
evolve into individuals that correspond to high fi tness phenotypes (ANNs).

Th ere are a lot of ANN encoding methods [3, 7, 8, 10, 12, 13, 14]. In principle, 
all the existing encoding methods can be divided into two main classes, i.e., direct 
encodings and indirect encodings. As for the direct methods, all the information 
necessary to create ANN (e.g. weights, number of neurons, number of layers) is 
directly stored in chromosomes. Th us, to encode larger networks, larger chromosomes 
are necessary, which is the main drawback of the direct methods. As regards the 
indirect methods, we deal with chromosomes which are recipes how to create 
a network. Such encodings can be used to create larger neural architectures by 
means of relatively short chromosomes.

Th e paper presents a new indirect encoding method called Assembler Encoding 
(AE). AE originates from the cellular [7] and edge encoding [10]. However, it also 
has features common with Linear Genetic Programming presented, among other 
things, in [9, 15]. AE assumes that ANN is represented in the form of a program 
(Assembler Encoding Program — AEP) whose structure is similar to the structure 
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of a simple assembler program. AEPs are formed by means of GAs. Th e task of 
each AEP is to create NDM which determines synaptic weights between neurons 
in ANN designed. In AE, the process of ANN construction consists of three stages. 
At fi rst, GA is used to produce AEPs. Next, each AEP creates and fi lls up NDM. 
Th en, the matrix created is transformed into ANN.

AE has many variants. Th e individual variants diff er in the method used to 
encode AEP in the form of genotype, in the method used to create modular ANNs, 
in types of operations used in AEPs, and in types of GAs used to process individual 
parts of AEPs. To defi ne one fi nal version of AE, diff erent experiments were carried 
out. Th e results of the experiments mentioned are presented among other things 
in [19, 20, 21, 22]. Th e current paper is a continuation of prior works and its main 
goal is to defi ne the key element of AE, i.e., the evolutionary process responsible 
for creating AEPs and ANNs. In AE, to produce AEPs and in consequence ANNs, 
genetic algorithms (GAs) are used. Th e evolution of AEPs takes place in many 
diff erent populations. Each population includes a diff erent element of AEP. To create 
AEP, elements from each population have to be combined together. In order for 
AEP to be eff ective representation of ANN, all its elements have to cooperate. 
To accomplish the cooperation between individual elements of AEP, the evolution 
in each population has to be appropriately organized, i.e., it is necessary to properly 
determine diff erent parameters controlling the evolution in each population. Th e 
main goal of the paper is to answer the following question: how to organize the 
evolution in AE, so as to make ANNs created possibly the most eff ective? To answer 
the question, the experiments were carried out. During the experiments, the task 
of each ANN was to control a team of cooperating agents-predators. Th e common 
goal of the predators was to capture a fast moving agent-prey behaving by a simple 
stochastic strategy. 

Th e paper is organized as follows: section 2 is a short presentation of AE; 
section 3 is a detailed description of the model of evolution used in AE; section 4 
illustrates the results of the experiments; section 5 is the summary.

2. Assembler encoding — fundamentals

In AE, ANN is represented in the form of a program called AEP. AEP is 
composed of two parts, i.e., the part including operations (the code part of AEP) 
and the part including data (the memory part of AEP). Th e task of AEP is to create 
and to fi ll in NDM with values. To this end, AEP uses the operations. Th e operations 
are run in turn. When working, the operations use data located at the end of AEP 
(Fig. 1). Once the last operation fi nishes its work the process of creating NDM is 
completed. NDM is then transformed into ANN. 
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AEPs can use various operations. Th e main task of most of the operations is to 
modify NDM. Th e modifi cation can involve a single element of NDM or a group 
of elements. In Fig 2 an example operation used in AE is presented.

CHGC0 operation presented in Fig. 2 modifi es values of elements of NDM 
located in the column indicated by the parameter p0 and the register R2. Th e number 
of elements being updated is stored in the parameter p2. Th e index of the fi rst 
element being updated is located in the register R1. To update elements of NDM 
CHGC0 uses data from AEP. Th e index to a memory cell including the fi rst data 
used by CHGC0 is stored in p1.

In addition to the operations whose task is to modify elements of NDM, AE also 
uses operations changing the size of NDM. AE assumes that the initial size of NDM 
is encoded in the chromosome with data (Fig. 3). Th en, each AEP has a potential 
to modify the size of NDM through use of operations ADDN and DELN. ADDN 
adds new rows and columns to NDM. Th is procedure corresponds to adding new 
neurons to ANN — neurons unconnected with the rest of ANN. Th e addition of 
new neurons does not destroy connections established in ANN. Th e task of DELN 
is to remove a single neuron from ANN. Th e elimination of a neuron practically 
takes place through removing corresponding row and column from NDM.

Fig. 1. Diagram of AE (AEP presented on the right includes four operations and four memory cells. 
Operation 0 changes a single element of NDM. To this end it uses three consecutive memory cells. Th e 
fi rst two cells store an address to the element of NDM being updated. To determine the fi nal address of 
the element mentioned values of registers are also used. Th e third memory cell used by the Operation 0 
stores a new value of the element. Th e value is scaled before NDM is updated. A pointer to the memory 
part of AEP, where three cells used by the Operation 0 are located, is included in the Operation itself.)
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In addition to the operations presented above, AE also uses a jump operation 
denoted as JMP. Th is operation makes it possible to repeatedly use the same code 
of AEP in diff erent places of NDM. It is possible thanks to changing values of the 
registers once the jump is performed. 

Fig. 2. CHGC0 changing a part of column of NDM (D[i] — the ith data in AEP, D.length — the 
number of memory cells)

Fig. 3. Using ADDN and DELN by AEP

Number of
rows in NDM Data 1 Data 2 Data 3 Data 4 Data 5

DELN

ADDN
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Fig. 4. JMP operation
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Once AEP fi nishes its work, the process of transforming NDM into ANN is 
started. To make it possible to construct ANN based on NDM, the latter has to 
include all the information necessary to create the network. When we wish to create 
the same skeleton of ANN, i.e., ANN without weights of interneuron connections 
determined, NDM can take the form of the classical connectivity matrix (CM) [12], 
i.e., a square, binary matrix of the number of rows and columns equal to the number 
of neurons. Th e value “1” in the ith column and the jth row of such a matrix means 
the connection between the ith neuron and the jth neuron. In turn, the value “0” 
means lack of the connection between these neurons. When the purpose is to create 
complete ANN with determined values of weights, types of neurons, parameters 
of neurons, NDM should take the form of a real valued variety of CM, with extra 
columns or rows containing defi nitions of individual neurons. Th e example of such 
NDM is presented in Fig. 5. 

3. Th e model of the evolution used in AE

In AE, AEPs and in consequence ANNs are created by means of GAs. Th e 
evolution of AEPs proceeds according to Cooperative Coevolution GA (CCGA 
— Fig. 6), i.e., the scheme proposed by Potter and De Jong [17, 18]. Th e scheme 
assumes a division of the evolutionarily created solution into parts. Each part 

Fig. 6. Evaluation in CCGA
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evolves in a separate population. Th e complete solution is formed from selected 
representatives of each population. 

To use the scheme above in relation to AEPs, it is necessary to divide them into 
parts (Fig. 7). In the case of AEPs, the division is natural. Th e operations and data 
make up natural parts of AEPs. Since the evolutionary scheme chosen assumes the 
evolution of each part in a separate population, AEP consisting of n operations and 
a sequence of data evolves in n populations with operations and one population 
with data. During the evolution, AEPs expand gradually. Initially, all AEPs include 
one operation and a sequence of data. Th e operations and the data come from 
two diff erent populations. When the evolution stagnates, i.e., lack of progress in 
fi tness of generated solutions is observed over some period, a set of the populations 
containing the operations is enlarged by one population. Th is procedure extends 
all AEPs by one operation.

Fig. 7. Evolution of AEPs
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In AE, the operations and data are usually encoded in the form of binary 
strings (in AE, two classes of operations are used, i.e., four-parameter operations 
encoded as binary strings and three-parameter operations encoded as strings 
including zeros, ones and the so-called don’t cares — “#” [2, 6]. In the experiments 
reported in the paper only four-parameter operations are used). Each chromosome-
operation includes fi ve blocks of genes. Th e fi rst block determines a code of the 
operation, while the remaining blocks contain a binary representation of four 
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parameters of the operation (e.g. 01000|11000|01000|00000|00100 represents the 
following operation: CHGC0|-1|1|0|2). Chromosomes-data are vectors including 
binary encoded integers. Each integer encodes a single element of data. In AE, all 
chromosomes-operations have the same length. Chromosome-data can change the 
length during the evolutionary process.

4. Experiments 

As noted above, AEPs evolve in many separate populations. In order to obtain 
eff ective AEPs and in consequence ANNs, individuals from diff erent populations 
have to cooperate. It involves not only operations and data but also the operations 
themselves. Operations and data from diff erent populations have to match up to 
form high quality AEPs. Th e main goal of the experiments, reported in the paper, 
was to discover general rules of how to control the evolution in AE so as to produce 
cooperating operations and data, and to make AEPs and ANNs possibly the most 
eff ective. In the experiments, diff erent confi gurations of parameters supervising the 
evolutionary process in AE were tested. Each confi guration was used thirty times, 
i.e., thirty ANNs were created for each of them. Th e task of ANNs created during 

Fig. 8. Artifi cial world in which task of predators was to capture prey
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the tests, was to control a set of cooperating predators whose common goal was to 
capture a fast moving prey. Th e experiments were performed in the confi guration 
with one prey and three chasing predators. Th e prey behaved according to a simple 
stochastic algorithm whereas the predators were controlled by a single ANN.

4.1. Environment

Th e predators and the prey lived in common environment. We used 20 × 20 
square without obstacles to represent the environment. In order to ensure infi nite 
space for the predators and the prey and for their struggles, we made the environment 
open at each side. Th is means that every attempt to move beyond upper, lower, 
right or left  border of the square caused the object making such an attempt to move 
to the opposite side of the environment. As a result, a simple strategy of predators 
consisting in chasing the prey did not work. In such situation, the prey in order to 
evade predators, could simply escape up, down, right or left . 

4.2. Residents of the artifi cial world

In the experiments, three predators and one prey coexisted in the artifi cial 
environment. Th e predators were controlled by ANN produced by AEP. Th ey 
could select fi ve actions: to move in North, South, West, East direction or to stand 
still. Th e length of the step made by every predator was 1 while the step made by 
the prey amounted either to 2 or to 1. In order to capture the prey, the predators 
had to cooperate. Th eir speed was either two times slower or the same as speed of 
the escaping prey so they could not simply chase the prey to grasp it. We assumed 
that the prey was captured if the distance between it and the nearest predator was 
lower than 2.

In the experiments, we used three types of prey — a simple prey, an advanced 
prey, and a random advanced prey. Th e preys, regardless of the type, did not move 
when no predator was closer to them than 5. Otherwise, the simple prey moved 
directly away from the nearest predator. Making decision, the advanced prey, 
unlike its simpler counterpart, always took into consideration the location of all 
the predators that were situated close to it. Actions performed by the advanced 
prey always maximized the average distance between the prey and all the predators 
that were close to it. Th e only diff erence between the random advanced prey and 
its deterministic counterpart is that the random prey, when was running away, 
sometimes took random decisions. Th at is, actions performed by the random 
advanced prey were either random or they maximized the average distance between 
the prey and all the predators that were close to it. Th e prey, regardless of the type, 
when was running away could select four actions: to move in North, South, West 
or East direction.
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 4.3. Neural controllers

Feed-forward ANNs used in the experiments contained three types of neurons: 
radial, sigmoid, and linear neurons. Th e information about the type of neuron was 
located in an additional column of NDM. Each matrix included three additional 
columns. Th e remaining two columns contained information about bias and value 
of one parameter of each neuron.

ANNs constructed during the experiments had usually six inputs and three 
outputs (in some cases ANNs did not require so many inputs to eff ectively control 
predators). Th e number of outputs corresponded to the number of predators. 
In turn, the number of inputs was twice the number of predators. Each output 
gave commands to one predator. In turn, each input informed about vertical or 
horizontal distance between the prey and one of the predators.

4.4. Evaluation process

In order to evaluate ANNs we used thirty diff erent scenarios. Th e tests proceeded 
in the following way. At fi rst, each ANN was tested in the scenario no. 1. If the 
predators controlled by ANN could not capture the prey during some assumed 
period, the test was stopped and ANN received appropriate evaluation that depended 
on the distance between the prey and the nearest predator. However, if the predators 
grasped the prey, they were put to test according to next scenario. During the 
experiments, we assumed that the predators could perform 100 steps before the 
scenario was interrupted. 

Th e scenarios used in the experiments diff ered in initial position of the prey, in 
the length of step of the prey and in the type of the prey applied (simple, advanced, 
random advanced). Consecutive scenarios were more and more diffi  cult. At fi rst, 
the predators had to capture the simple prey that was as fast as them. Th e predators, 
which passed the fi rst exam, had to pit against the simple prey that was two times 
faster than the predators. In the next step, the speed of the prey was decreased. 
However, this time the predators had to face the advanced prey which took better 
decisions than his predecessor. In the next stage, the predators which coped with 
all earlier scenarios had to capture the advanced, fast prey. In the last ten scenarios, 
the predators had to capture the random variety of the advanced prey. In all the 
scenarios, starting positions of all three predators were the same. Th e predators 
always started from position (0, 0). Below, described are all thirty scenarios.
— Scenario no 1, 6, 11, 16, 21, 26: starting position of the prey (5, 5) — position 1;
— Scenario no 2, 7, 12, 17, 22, 27: starting position of the prey (15, 5) — position 2;
— Scenario no 3, 8, 13, 18, 23, 28: starting position of the prey (5, 15) — position 3;
— Scenario no 4, 9, 14, 19, 24, 29: starting position of the prey (15, 15) — posi-

tion 4;



114 T. Praczyk

— Scenario no 5, 10, 15, 20, 25, 30: starting position of the prey (10, 10) — posi-
tion 5;

— Scenario no 1-5: the simple prey, the prey’s step = 1;
— Scenario no 6-10: the simple prey, the prey’s step = 2;
— Scenario no 11-15: the advanced prey, the prey’s step = 1;
— Scenario no 16-20: the advanced prey, the prey’s step = 2;
— Scenario no 21-25: the random advanced prey, the prey’s step = 1;
— Scenario no 26-30: the random advanced prey, the prey’s step = 2.

To evaluate ANNs, the following fi tness function was used: 

 

 

( )

( )
( )

1

th
max 100

th

min ,   prey not captured in  scenario

100   prey captured in  scenario

0  prey not captured   in the previous scenario

n

i
i

i

p P

ii
captured

f ANN f

d d p s i

mf f ia

=

∈

=

⎧ −
⎪
⎪ −= ⎨ +⎪
⎪⎩

∑

  

where: if  — the reward received in the ith scenario;

  ( ),d p s  — is the distance between the prey and the predator p in state 
  of the environment s;
  maxd  — maximal distance between two points in applied environment;
  100

is  — the end state in the ith scenario;

  capturedf  — the reward for grasping the prey in single scenario 
  (in our experiments capturedf  amounted to 100);
  im  — the number of steps which the predators needed to capture 
  the prey ( im < 100);
  a — this value prevents the situation in which partial success would 
  be better than success in all scenarios;
  n — the number of scenarios.

Th e total fi tness of each evaluated neuro-controller is a sum of rewards from the 
scenarios in which the network considered has taken part. Th e reward for a scenario 
depends on the chase result. In the case of success, the neuro-controller obtains an 
extra fi tness for grasping a prey and additionally a reward reversely proportional 
to the number of steps which the predators had to make to capture the prey. In the 
case of failure, the controlling ANN obtains fi tness proportional to the distance 
between the prey and the nearest predator.
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4.5. Parameters of the evolutionary process

In AE, to process diff erent populations, two types of GAs have been used so far, 
i.e., Eugenic GA [1, 16, 23] and Canonical GA [6]. In the paper, the experiments 
are reported in which only the later algorithm was used. It was used to process both 
types of populations occurring in AE, i.e., populations including operations and 
populations including data. Th e algorithm applied in relation to the populations with 
operations used two classical genetic operators, i.e., crossover and mutation. Th e 
algorithm processing the populations including data additionally used a cut-splice 
operator. Th e task of the cut-splice was to modify the length of chromosomes-data 
so that AEPs could use data of varied length. In all cases, the tournament selection 
was used to select parents for next generations of data and operations.

All chromosomes used in the experiments consisted of 7-bit blocks of genes. 
Every chromosome-operation consisted of 5 blocks of binary genes (one block for 
a code of operation and the remaining four blocks for parameters of the operation). 
Th e list of applied operations is presented at the end of the paper (Appendix 1). In the 
experiments we assumed that chromosomes-data could maximally contain 30 data, 
i.e., 30 7-bit blocks of genes. Each use of excessive number of data caused drastic 
decrease in fi tness of the AEP. Th roughout the experiments, we assumed maximal 
number of operations, which could be possessed by each AEP: 12 operations. 
Initially, every AEP contained one operation and one set of data from two diff erent 
populations. Consecutive populations with operations were added every 5000 
of co-evolutionary cycles if generated AEPs were not able to achieve progress 
in performance within this period. Populations of operations and data could be 
also replaced by newly created populations when the contribution of substituted 
population to AEPs was considerably less than the contribution of the remaining 
populations. Th e contribution of the population was measured as average fi tness 
of individuals belonging to that population.

In the experiments, the infl uence of the following parameters on the eff ectiveness 
of the evolutionary process was tested:

— the number of individuals (in each population);
— mutation probability (in each population);
— the number of individuals taking part in the tournament (in each popu-

lation).
Such parameters as: 
— crossover probability (in each population);
— cut-splice probability (exclusively in the population with data);
remained constant during the tests.
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During the experiments, the following confi gurations of the parameters were 
tested:

 
Table 1

Confi gurations of the parameters used in the experiments 

confi guration 
A (tournament, 

mutation) 

confi guration 
B (tournament, 

mutation)

confi guration 
C (tournament, 

mutation)

confi guration 
D (tournament, 

mutation)

confi guration a 
(populations) confi guration aA confi guration aB confi guration aC confi guration aD

confi guration b 
(populations) confi guration bA confi guration bB confi guration bC confi guration bD

confi guration c 
(populations) confi guration cA confi guration cB confi guration cC confi guration cD

 
where

— confi guration a (populations) — all populations of equal size, 60 individuals 
in each population;

— confi guration b (populations) — more individuals in the populations in-
cluding operations, 80 individuals in all populations with operations and 
40 individuals in the population with data;

— confi guration c (populations) — more individuals in the populations 
including data, 40 individuals in all populations with operations and 80 
individuals in the population with data;

— confi guration A (tournament, mutation) — small mutation and tourna-
ment in all populations, size of tournament = 2, mutation = 0.02 in all 
populations;

— confi guration B (tournament, mutation) — large mutation and tournament 
in all populations, size of tournament = 8, mutation = 0.1 in all popula-
tions;

— confi guration C (tournament, mutation) — small mutation and tournament 
in all populations with operations and large mutation and tournament in 
the population with data, size of tournament = 2, mutation = 0.02 in all 
populations with operations, size of tournament = 8, mutation = 0.1 in the 
population with data;

— confi guration D (tournament, mutation) — large mutation and tournament 
in all populations with operations and small mutation and tournament 
in the population with data, size of tournament = 8, mutation = 0.1 in all 
populations with operations, size of tournament = 2, mutation = 0.02 in 
the population with data;
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All the confi gurations presented above were defi ned arbitrary by the author.
In the experiments we decided that large size of the tournament should be 

combined with large mutation and vice versa. Numerous tournament causes fast 
convergence of Canonical GA to a single solution that is very oft en far from the 
optimality. To avoid such situation we combine large tournament with large mutation. 
In the case when selecting individuals for reproduction is based on the tournament 
of small size, the competition between individuals is not so rough, divergence in 
a population is preserved and large mutation is not necessary. 

Values of the remaining parameters, essential for the results of the tests, are 
presented below:

— crossover probability (in each population): 0.7;
— cut-splice probability (exclusively in the population with data): 0.1;
— the number of co-evolutionary cycles: 50 000; 
— the maximum size of NDMs: 30 rows and 33 columns;
— the probability of the random prey to select a random action: 0.3. 

4.6. Experimental results

Th e results of the tests are presented in Table 2 and Table 3. During the experiments, 
thirty evolutionary runs were performed for each confi guration of the parameters 
considered in Table 1 (thirty ANNs were generated for each confi guration, i.e., 
30 ANNs for confi guration aA, 30 ANNs for confi guration aB and so on).

Table 2
Th e best confi gurations tested in the experiments

 

conf. c (populations) conf. D (tournament, mutation)

(1) (2)

Average fi tness of ANNs 2602 2826.9

% of successes 60.7% 69%

Th e results of the experiments presented in Table 2 and Table 3 can make up 
the base to defi ne general rules of organizing the evolutionary process in AE. Th e 
analysis of the results of the tests allows us to formulate the following conclusions. 
First, as for the size of individual populations it seems that the most benefi cial 
solution to ANNs created is when populations with data contain more individuals 
than populations with operations (confi guration c). It is apparent in the column (1) 
of Table 2. Th e results incorporated in this column include all the confi gurations 
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in which populations with data contained 80 individuals whereas populations 
with operations contained 40 individuals. More than 60% of ANNs created in 
these confi gurations were successful ANNs, i.e., ANNs which resulted in capturing 
the prey in all thirty scenarios (such ANNs achieved complete success). Th e 
second conclusion involves the probability of mutation and conditions of selecting 
individuals for reproduction. Th e results of the tests imply that the best solution 
in this case is slight mutation and sparse tournament in the population with data 
and the opposite situation, i.e., large mutation and numerous tournament, in the 
populations with operations [column (2) in Table 2, confi guration D]. In the case 
considered, almost 70% of ANNs were successful. Th e similar result was achieved in 
the confi gurations with slight mutation and sparse tournament in all the populations 
— 63% of ANNs were successful in this case (confi guration A).

Table 3
Th e best confi gurations tested in the experiments

 

conf. aA conf. aD conf. bD conf. cA conf. cC conf. cD

(1) (2) (3) (4) (5) (6)

Average fi tness of ANNs 2755.8 2707.4 2793.3 2788.6 2589.6 2984.8

% of successes 63% 66% 56% 73% 52% 85%

With regard to confi gurations considered in Table 3, the best of them is the 
confi guration cD (the combined confi guration of the confi gurations c and D). Using 
this confi guration enabled us to generate ANNs that were in 85% successful. What is 
more, successful ANNs were created, in this case, very fast and based on rather simple 
AEPs. In this instance, AEPs included on average 2.8 operations and 19.9 data. 

5. Summary

AE is ANN encoding method in which a network is represented in the form of 
AEP. Th e task of AEP is to create and to fi ll in NDM with values. Once AEP fi nishes 
its work ANN is created based on the information contained in NDM. In AE, to 
create AEPs and in consequence ANNs, GAs are used.

To make AE an eff ective tool for creating ANNs, it is necessary to appropriately 
organize all the evolutionary process responsible for generating AEPs, i.e., it is 
necessary to properly select values of diff erent parameters controlling the evolutionary 
process mentioned. To determine optimal conditions of the evolution in AE, the 
experiments in the predator-prey problem were performed. Th e task of ANNs 
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created during the experiments was to control a team of autonomous agents 
called predators. A common goal of the predators was to grasp a fast moving prey 
behaving according to a simple stochastic strategy. To succeed the common job of 
the predators, they had to cooperate.

Since AEPs evolve in many populations, the organization of all the evolutionary 
processes requires determining parameters defi ning the evolution in each 
population. In the experiments, an infl uence of the following parameters on the 
eff ectiveness of the evolutionary process was tested: the number of individuals (in 
each population), mutation probability (in each population), and the number of 
individuals taking part in the tournament (in each population). Such parameters 
as: crossover probability (in each population) and cut-splice probability (exclusively 
in the population with data) remained constant during the tests. Th e experiments 
were conducted for diff erent confi gurations of the parameters selected. Each 
confi guration diff ered from the others in values of the parameters selected. Th e 
experiments showed that the most advantageous solution to ANNs is when 
populations with data contain more individuals than populations with operations. 
Moreover, it turned out that the most eff ective ANNs arise when in the population 
with data we deal with slight mutation and sparse tournament whereas in the 
populations with operations we deal with the opposite situation, i.e., with large 
mutation and numerous tournament.

Received July 10 2008, revised December 2008.

Appendix 1 — List of operations used in experiments

CHG — Update of element. Both new value and address of element are located in para-
meters of operation.
CHGC0 — Update of certain number of elements in column. Index of column, index of fi rst 
element in column that will be changed, number of changed elements and a pointer to data, 
where new values of elements are memorized, are located in parameters of operation.
CHGC1 — Update of certain number of elements in column. Index of column, index of 
fi rst element in column that will be changed, number of changed elements and new value 
for column’s elements, the same for all elements, are located in parameters of operation.
CHGC2 — Update of certain number of elements in column. New value of every element 
is sum of operation’s parameter and current value of this element. Th e second parameter of 
operation is index of column. Th e third and the fourth parameter of operation determine 
respectively the number of changed elements and index of the fi rst element in column that 
will be changed. 
CHGC3 — Th e part of elements from one column are transformed to another column. 
Both columns are indicated by parameters of operation. Th e number of transferred ele-
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ments and index of the fi rst element in column that will be transferred are also included 
in parameters of operation.
 CHGC4 — An update of certain number of elements in column. New value of every element 
is a sum of current value of this element and respective value from memory of a program. 
An index of the column, an index of the fi rst element in the column that will be changed, 
the number of changed elements and a pointer to data, where ingredients of individual 
sums are memorized, are located in parameters of operation.
CHGR0 — like CHGC0 but an update refers to row of matrix.
CHGR1 — like CHGC1.
CHGR2 — like CHGC2.
CHGR3 — like CHGC3.
CHGR4 — like CHGC4. 
CHGM0 — Change of block of elements. Elements are updated in columns, in turn, one 
aft er another, starting from element pointed by parameters of operation. Th e number of 
changed elements and place in the memory where new values for elements are located are 
determined by parameters of operation.
 CHGM1 — like CHGM0 but new value of every element is a sum of its current value and 
parameter of operation.
 CHGM2 — like CHGM0 but new value of each element is a sum of its current value and 
value from memory part of a program. Th e number of changed elements and place in the 
memory where arguments of individual sums are located are determined by parameters 
of operation.
JMP — Jump operation. Th e number of jumps, a pointer to next operation and new values 
of registers are located in parameters of jump operation.
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T. PRACZYK

Organizacja procesu ewolucyjnego w kodowaniu asemblerowym 
Streszczenie. Kodowanie asemblerowe jest metodą wykorzystującą metody ewolucyjne do tworzenia 
sieci neuronowych. W kodowaniu asemblerowym sieci neuronowe ewoluują w wielu oddzielnych 
populacjach. Stworzenie pojedynczej sieci neuronowej wymaga połączenia elementów pochodzących 
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z różnych populacji. Aby sieci neuronowe tworzone w ten sposób były wysokiej jakości konieczne 
jest odpowiednie sterowanie ewolucją w każdej populacji. Artykuł prezentuje wyniki badań, których 
głównym celem było określenie zasad prowadzenia ewolucji w Kodowaniu Asemblerowym. 
Słowa kluczowe: ewolucyjne sieci neuronowe
Symbole UKD: 007


