
BIULETYN WAT
VOL. LVIII, NR 2, 2009

Organization of the evolutionary process responsible
for creating neural networks in assembler encoding

TOMASZ PRACZYK

Naval University, 81-103 Gdynia, Śmidowicza 69, Poland

Abstract. Assembler Encoding (AE) represents Artifi cial Neural Network (ANN) in the form of
a simple program called Assembler Encoding Program (AEP). Th e task of AEP is to create the so-
called Network Defi nition Matrix (NDM) including all the information necessary to construct ANN.
AEPs and in consequence ANNs are formed by means of evolutionary techniques.
To make AE an eff ective tool for creating ANNs it is necessary to appropriately organize all the
evolutionary processes responsible for generating AEPs, i.e., it is necessary to properly select values of
diff erent parameters controlling the evolutionary process mentioned. To determine optimal conditions
of the evolution in AE, experiments in a predator-prey problem were performed. Th e results of the
experiments are presented at the end of the paper.
Keywords: evolutionary neural networks
Universal Decimal Classifi cation: 007

1. Introduction

ANNs constitute a sub-domain of artifi cial intelligence that is broadly used
to solve various problems in diff erent fi elds (e.g. pattern classifi cation, function
approximation, optimization, image compression, associative memories, robot
control problems, etc.). Th e performance of ANNs highly depends on two factors,
i.e., network’s topology and a set of network’s parameters (typically weights).
Th erefore, to develop an appropriate network it is necessary to determine the
architecture and parameters. Th ere are many diff erent ANN learning algorithms
(e.g. BackPropagation) that change values of parameters leaving the structure
completely intact. In such a case, the process of searching for the proper network’s
topology is the task of a network’s designer who arbitrarily chooses the network’s

104 T. Praczyk

structure, starts network learning and fi nally puts the network to a test. If the result
of the test is satisfactory, the learning process is stopped. If not, it is continued
further. Th e designer manually determines the next potential network’s topology
and runs the learning algorithm again. Such loop — topology determination and
learning is repeated until the network which is able to carry out a dedicated task
at an appropriate level is found. At fi rst glance, it is apparent that such a procedure
could be very time-consuming and, what is worse, in the case of more complex
problems, can lead to a situation when all chosen and trained networks would be
incapable of solving the task.

In addition to the learning concept presented above, there exist other approaches
that can be called constructive and destructive. Th e constructive ones use a learning
philosophy that consists in incremental development of ANN starting from small
architecture. At the beginning, ANN has a small number of components to which
next components are gradually added until a resultant network fully meets the
requirements imposed. On the other hand, the destructive ones prepare a large
fully connected ANN and then try to remove individual elements of the network,
such as synaptic connections and neurons.

Genetic Algorithms (GAs) are the next technique that has been successfully
applied to search for optimal ANNs [4, 5, 11] for the recent years. GA processes
a population of genotypes that typically encode one phenotype although encoding
several phenotypes is also possible. In evolution of ANNs genotypes there are
encodings of corresponding networks (phenotypes). Th e evolutionary procedure
involves selecting genotypes (encoded networks) for reproduction based on their
fi tness, and then by introducing genetically changed off spring (mutation, crossover
and other genetic operators) into next population. Repeating the whole procedure
over many generations causes the population of encoded networks to gradually
evolve into individuals that correspond to high fi tness phenotypes (ANNs).

Th ere are a lot of ANN encoding methods [3, 7, 8, 10, 12, 13, 14]. In principle,
all the existing encoding methods can be divided into two main classes, i.e., direct
encodings and indirect encodings. As for the direct methods, all the information
necessary to create ANN (e.g. weights, number of neurons, number of layers) is
directly stored in chromosomes. Th us, to encode larger networks, larger chromosomes
are necessary, which is the main drawback of the direct methods. As regards the
indirect methods, we deal with chromosomes which are recipes how to create
a network. Such encodings can be used to create larger neural architectures by
means of relatively short chromosomes.

Th e paper presents a new indirect encoding method called Assembler Encoding
(AE). AE originates from the cellular [7] and edge encoding [10]. However, it also
has features common with Linear Genetic Programming presented, among other
things, in [9, 15]. AE assumes that ANN is represented in the form of a program
(Assembler Encoding Program — AEP) whose structure is similar to the structure

105Organization of the evolutionary process responsible for creating neural networks...

of a simple assembler program. AEPs are formed by means of GAs. Th e task of
each AEP is to create NDM which determines synaptic weights between neurons
in ANN designed. In AE, the process of ANN construction consists of three stages.
At fi rst, GA is used to produce AEPs. Next, each AEP creates and fi lls up NDM.
Th en, the matrix created is transformed into ANN.

AE has many variants. Th e individual variants diff er in the method used to
encode AEP in the form of genotype, in the method used to create modular ANNs,
in types of operations used in AEPs, and in types of GAs used to process individual
parts of AEPs. To defi ne one fi nal version of AE, diff erent experiments were carried
out. Th e results of the experiments mentioned are presented among other things
in [19, 20, 21, 22]. Th e current paper is a continuation of prior works and its main
goal is to defi ne the key element of AE, i.e., the evolutionary process responsible
for creating AEPs and ANNs. In AE, to produce AEPs and in consequence ANNs,
genetic algorithms (GAs) are used. Th e evolution of AEPs takes place in many
diff erent populations. Each population includes a diff erent element of AEP. To create
AEP, elements from each population have to be combined together. In order for
AEP to be eff ective representation of ANN, all its elements have to cooperate.
To accomplish the cooperation between individual elements of AEP, the evolution
in each population has to be appropriately organized, i.e., it is necessary to properly
determine diff erent parameters controlling the evolution in each population. Th e
main goal of the paper is to answer the following question: how to organize the
evolution in AE, so as to make ANNs created possibly the most eff ective? To answer
the question, the experiments were carried out. During the experiments, the task
of each ANN was to control a team of cooperating agents-predators. Th e common
goal of the predators was to capture a fast moving agent-prey behaving by a simple
stochastic strategy.

Th e paper is organized as follows: section 2 is a short presentation of AE;
section 3 is a detailed description of the model of evolution used in AE; section 4
illustrates the results of the experiments; section 5 is the summary.

2. Assembler encoding — fundamentals

In AE, ANN is represented in the form of a program called AEP. AEP is
composed of two parts, i.e., the part including operations (the code part of AEP)
and the part including data (the memory part of AEP). Th e task of AEP is to create
and to fi ll in NDM with values. To this end, AEP uses the operations. Th e operations
are run in turn. When working, the operations use data located at the end of AEP
(Fig. 1). Once the last operation fi nishes its work the process of creating NDM is
completed. NDM is then transformed into ANN.

106 T. Praczyk

AEPs can use various operations. Th e main task of most of the operations is to
modify NDM. Th e modifi cation can involve a single element of NDM or a group
of elements. In Fig 2 an example operation used in AE is presented.

CHGC0 operation presented in Fig. 2 modifi es values of elements of NDM
located in the column indicated by the parameter p0 and the register R2. Th e number
of elements being updated is stored in the parameter p2. Th e index of the fi rst
element being updated is located in the register R1. To update elements of NDM
CHGC0 uses data from AEP. Th e index to a memory cell including the fi rst data
used by CHGC0 is stored in p1.

In addition to the operations whose task is to modify elements of NDM, AE also
uses operations changing the size of NDM. AE assumes that the initial size of NDM
is encoded in the chromosome with data (Fig. 3). Th en, each AEP has a potential
to modify the size of NDM through use of operations ADDN and DELN. ADDN
adds new rows and columns to NDM. Th is procedure corresponds to adding new
neurons to ANN — neurons unconnected with the rest of ANN. Th e addition of
new neurons does not destroy connections established in ANN. Th e task of DELN
is to remove a single neuron from ANN. Th e elimination of a neuron practically
takes place through removing corresponding row and column from NDM.

Fig. 1. Diagram of AE (AEP presented on the right includes four operations and four memory cells.
Operation 0 changes a single element of NDM. To this end it uses three consecutive memory cells. Th e
fi rst two cells store an address to the element of NDM being updated. To determine the fi nal address of
the element mentioned values of registers are also used. Th e third memory cell used by the Operation 0
stores a new value of the element. Th e value is scaled before NDM is updated. A pointer to the memory
part of AEP, where three cells used by the Operation 0 are located, is included in the Operation itself.)

0.3 0.2 0.3 0.4 -0.7 0.1

-0.9 0.8 0.3 -0.5 -1 0.9

-0.1 0.5 0.6 -0.5 0.3 0.2

-0.6 0.3 -0,1 0.6 0.1 0.5

Register1
value = 0

Register2
value = 0

Oper. 0
Pointer = 0

column = (2 + 0) mod 6

ro
w

=
(1

+
0)

m
o

d
4

Oper. 1
Pointer = 3

Oper. 2
Pointer = 6

value = 77/256

Memory
cell 0

value = 1
Memory

cell 1
value = 2
Memory

cell 2
value = 77

Memory
cell 3

value = 34

Oper. 3
Pointer = 8

107Organization of the evolutionary process responsible for creating neural networks...

In addition to the operations presented above, AE also uses a jump operation
denoted as JMP. Th is operation makes it possible to repeatedly use the same code
of AEP in diff erent places of NDM. It is possible thanks to changing values of the
registers once the jump is performed.

Fig. 2. CHGC0 changing a part of column of NDM (D[i] — the ith data in AEP, D.length — the
number of memory cells)

Fig. 3. Using ADDN and DELN by AEP

Number of
rows in NDM Data 1 Data 2 Data 3 Data 4 Data 5

DELN

ADDN

108 T. Praczyk

Fig. 4. JMP operation

0.3 0.2 0.3 0.2

-0.9 0.8 -0.9 0.8

-0.1 0.5 0.3 0.2

-0.6 0.3 -0.9 0.8

Operation
0

Operation
1

JMP
0, 2, 0

Memory
cell 0

value = 0

Memory
cell 1

value = 2

Memory
cell 2

value = 2

Memory
cell 3

value = 2

register
values

- second
time

register
values
- third
time

first time
R1 = 0, R2 = 0 second time

R1 = 0, R2 = 2

third time
R1 = 2, R2 = 2

The pointer to operation = 0
The number of jumps = 2

The pointer to the memory cell
(registers values) = 0

Fig. 5. NDM as Connectivity Matrix

0.3 0.2 0.3 0.4 -0.7 0.1

-0.9 0.8 1 -0.5 -1 0.9

-0.1 0.5 0.6 -0.5 0.3 0.2

-0.6 0.3 -0.1 0.6 0.1 0.5

input neuron

input neuron

output neuron

in
p

u
t

n
eu

ro
n

in
p

u
t

n
eu

ro
n

o
u

tp
u

t
n

eu
ro

n

b
ia

s

ty
p

e
o

f
n

eu
ro

n

109Organization of the evolutionary process responsible for creating neural networks...

Once AEP fi nishes its work, the process of transforming NDM into ANN is
started. To make it possible to construct ANN based on NDM, the latter has to
include all the information necessary to create the network. When we wish to create
the same skeleton of ANN, i.e., ANN without weights of interneuron connections
determined, NDM can take the form of the classical connectivity matrix (CM) [12],
i.e., a square, binary matrix of the number of rows and columns equal to the number
of neurons. Th e value “1” in the ith column and the jth row of such a matrix means
the connection between the ith neuron and the jth neuron. In turn, the value “0”
means lack of the connection between these neurons. When the purpose is to create
complete ANN with determined values of weights, types of neurons, parameters
of neurons, NDM should take the form of a real valued variety of CM, with extra
columns or rows containing defi nitions of individual neurons. Th e example of such
NDM is presented in Fig. 5.

3. Th e model of the evolution used in AE

In AE, AEPs and in consequence ANNs are created by means of GAs. Th e
evolution of AEPs proceeds according to Cooperative Coevolution GA (CCGA
— Fig. 6), i.e., the scheme proposed by Potter and De Jong [17, 18]. Th e scheme
assumes a division of the evolutionarily created solution into parts. Each part

Fig. 6. Evaluation in CCGA

Population no. 1 Population no. 2

Population no. 3

Evaluation

Representatives

110 T. Praczyk

evolves in a separate population. Th e complete solution is formed from selected
representatives of each population.

To use the scheme above in relation to AEPs, it is necessary to divide them into
parts (Fig. 7). In the case of AEPs, the division is natural. Th e operations and data
make up natural parts of AEPs. Since the evolutionary scheme chosen assumes the
evolution of each part in a separate population, AEP consisting of n operations and
a sequence of data evolves in n populations with operations and one population
with data. During the evolution, AEPs expand gradually. Initially, all AEPs include
one operation and a sequence of data. Th e operations and the data come from
two diff erent populations. When the evolution stagnates, i.e., lack of progress in
fi tness of generated solutions is observed over some period, a set of the populations
containing the operations is enlarged by one population. Th is procedure extends
all AEPs by one operation.

Fig. 7. Evolution of AEPs

Operation 1 Operation 2 Operation 3 Data

AEP
the best

individual

Data 1 Data 2 Data 3 Data 4

Population including data

the best
individual

the best
individualthe best

individual

Population no. 3

Population no. 2
Population no. 1

Param
1

Param
2

Param
3

Param
4

Param
1

Param
2

Param
3

Param
4Param

1
Param

2
Param

3
Param

4

Code of
operation

Code of
operationCode of

operation

In AE, the operations and data are usually encoded in the form of binary
strings (in AE, two classes of operations are used, i.e., four-parameter operations
encoded as binary strings and three-parameter operations encoded as strings
including zeros, ones and the so-called don’t cares — “#” [2, 6]. In the experiments
reported in the paper only four-parameter operations are used). Each chromosome-
operation includes fi ve blocks of genes. Th e fi rst block determines a code of the
operation, while the remaining blocks contain a binary representation of four

111Organization of the evolutionary process responsible for creating neural networks...

parameters of the operation (e.g. 01000|11000|01000|00000|00100 represents the
following operation: CHGC0|-1|1|0|2). Chromosomes-data are vectors including
binary encoded integers. Each integer encodes a single element of data. In AE, all
chromosomes-operations have the same length. Chromosome-data can change the
length during the evolutionary process.

4. Experiments

As noted above, AEPs evolve in many separate populations. In order to obtain
eff ective AEPs and in consequence ANNs, individuals from diff erent populations
have to cooperate. It involves not only operations and data but also the operations
themselves. Operations and data from diff erent populations have to match up to
form high quality AEPs. Th e main goal of the experiments, reported in the paper,
was to discover general rules of how to control the evolution in AE so as to produce
cooperating operations and data, and to make AEPs and ANNs possibly the most
eff ective. In the experiments, diff erent confi gurations of parameters supervising the
evolutionary process in AE were tested. Each confi guration was used thirty times,
i.e., thirty ANNs were created for each of them. Th e task of ANNs created during

Fig. 8. Artifi cial world in which task of predators was to capture prey

Prey

Predator

Predator

Predator

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

112 T. Praczyk

the tests, was to control a set of cooperating predators whose common goal was to
capture a fast moving prey. Th e experiments were performed in the confi guration
with one prey and three chasing predators. Th e prey behaved according to a simple
stochastic algorithm whereas the predators were controlled by a single ANN.

4.1. Environment

Th e predators and the prey lived in common environment. We used 20 × 20
square without obstacles to represent the environment. In order to ensure infi nite
space for the predators and the prey and for their struggles, we made the environment
open at each side. Th is means that every attempt to move beyond upper, lower,
right or left border of the square caused the object making such an attempt to move
to the opposite side of the environment. As a result, a simple strategy of predators
consisting in chasing the prey did not work. In such situation, the prey in order to
evade predators, could simply escape up, down, right or left .

4.2. Residents of the artifi cial world

In the experiments, three predators and one prey coexisted in the artifi cial
environment. Th e predators were controlled by ANN produced by AEP. Th ey
could select fi ve actions: to move in North, South, West, East direction or to stand
still. Th e length of the step made by every predator was 1 while the step made by
the prey amounted either to 2 or to 1. In order to capture the prey, the predators
had to cooperate. Th eir speed was either two times slower or the same as speed of
the escaping prey so they could not simply chase the prey to grasp it. We assumed
that the prey was captured if the distance between it and the nearest predator was
lower than 2.

In the experiments, we used three types of prey — a simple prey, an advanced
prey, and a random advanced prey. Th e preys, regardless of the type, did not move
when no predator was closer to them than 5. Otherwise, the simple prey moved
directly away from the nearest predator. Making decision, the advanced prey,
unlike its simpler counterpart, always took into consideration the location of all
the predators that were situated close to it. Actions performed by the advanced
prey always maximized the average distance between the prey and all the predators
that were close to it. Th e only diff erence between the random advanced prey and
its deterministic counterpart is that the random prey, when was running away,
sometimes took random decisions. Th at is, actions performed by the random
advanced prey were either random or they maximized the average distance between
the prey and all the predators that were close to it. Th e prey, regardless of the type,
when was running away could select four actions: to move in North, South, West
or East direction.

113Organization of the evolutionary process responsible for creating neural networks...

 4.3. Neural controllers

Feed-forward ANNs used in the experiments contained three types of neurons:
radial, sigmoid, and linear neurons. Th e information about the type of neuron was
located in an additional column of NDM. Each matrix included three additional
columns. Th e remaining two columns contained information about bias and value
of one parameter of each neuron.

ANNs constructed during the experiments had usually six inputs and three
outputs (in some cases ANNs did not require so many inputs to eff ectively control
predators). Th e number of outputs corresponded to the number of predators.
In turn, the number of inputs was twice the number of predators. Each output
gave commands to one predator. In turn, each input informed about vertical or
horizontal distance between the prey and one of the predators.

4.4. Evaluation process

In order to evaluate ANNs we used thirty diff erent scenarios. Th e tests proceeded
in the following way. At fi rst, each ANN was tested in the scenario no. 1. If the
predators controlled by ANN could not capture the prey during some assumed
period, the test was stopped and ANN received appropriate evaluation that depended
on the distance between the prey and the nearest predator. However, if the predators
grasped the prey, they were put to test according to next scenario. During the
experiments, we assumed that the predators could perform 100 steps before the
scenario was interrupted.

Th e scenarios used in the experiments diff ered in initial position of the prey, in
the length of step of the prey and in the type of the prey applied (simple, advanced,
random advanced). Consecutive scenarios were more and more diffi cult. At fi rst,
the predators had to capture the simple prey that was as fast as them. Th e predators,
which passed the fi rst exam, had to pit against the simple prey that was two times
faster than the predators. In the next step, the speed of the prey was decreased.
However, this time the predators had to face the advanced prey which took better
decisions than his predecessor. In the next stage, the predators which coped with
all earlier scenarios had to capture the advanced, fast prey. In the last ten scenarios,
the predators had to capture the random variety of the advanced prey. In all the
scenarios, starting positions of all three predators were the same. Th e predators
always started from position (0, 0). Below, described are all thirty scenarios.
— Scenario no 1, 6, 11, 16, 21, 26: starting position of the prey (5, 5) — position 1;
— Scenario no 2, 7, 12, 17, 22, 27: starting position of the prey (15, 5) — position 2;
— Scenario no 3, 8, 13, 18, 23, 28: starting position of the prey (5, 15) — position 3;
— Scenario no 4, 9, 14, 19, 24, 29: starting position of the prey (15, 15) — posi-

tion 4;

114 T. Praczyk

— Scenario no 5, 10, 15, 20, 25, 30: starting position of the prey (10, 10) — posi-
tion 5;

— Scenario no 1-5: the simple prey, the prey’s step = 1;
— Scenario no 6-10: the simple prey, the prey’s step = 2;
— Scenario no 11-15: the advanced prey, the prey’s step = 1;
— Scenario no 16-20: the advanced prey, the prey’s step = 2;
— Scenario no 21-25: the random advanced prey, the prey’s step = 1;
— Scenario no 26-30: the random advanced prey, the prey’s step = 2.

To evaluate ANNs, the following fi tness function was used:

()

()
()

1

th
max 100

th

min , prey not captured in scenario

100 prey captured in scenario

0 prey not captured in the previous scenario

n

i
i

i

p P

ii
captured

f ANN f

d d p s i

mf f ia

=

∈

=

⎧ −
⎪
⎪ −= ⎨ +⎪
⎪⎩

∑

where: if — the reward received in the ith scenario;

 (),d p s — is the distance between the prey and the predator p in state
 of the environment s;
 maxd — maximal distance between two points in applied environment;
 100

is — the end state in the ith scenario;

 capturedf — the reward for grasping the prey in single scenario
 (in our experiments capturedf amounted to 100);
 im — the number of steps which the predators needed to capture
 the prey (im < 100);
 a — this value prevents the situation in which partial success would
 be better than success in all scenarios;
 n — the number of scenarios.

Th e total fi tness of each evaluated neuro-controller is a sum of rewards from the
scenarios in which the network considered has taken part. Th e reward for a scenario
depends on the chase result. In the case of success, the neuro-controller obtains an
extra fi tness for grasping a prey and additionally a reward reversely proportional
to the number of steps which the predators had to make to capture the prey. In the
case of failure, the controlling ANN obtains fi tness proportional to the distance
between the prey and the nearest predator.

115Organization of the evolutionary process responsible for creating neural networks...

4.5. Parameters of the evolutionary process

In AE, to process diff erent populations, two types of GAs have been used so far,
i.e., Eugenic GA [1, 16, 23] and Canonical GA [6]. In the paper, the experiments
are reported in which only the later algorithm was used. It was used to process both
types of populations occurring in AE, i.e., populations including operations and
populations including data. Th e algorithm applied in relation to the populations with
operations used two classical genetic operators, i.e., crossover and mutation. Th e
algorithm processing the populations including data additionally used a cut-splice
operator. Th e task of the cut-splice was to modify the length of chromosomes-data
so that AEPs could use data of varied length. In all cases, the tournament selection
was used to select parents for next generations of data and operations.

All chromosomes used in the experiments consisted of 7-bit blocks of genes.
Every chromosome-operation consisted of 5 blocks of binary genes (one block for
a code of operation and the remaining four blocks for parameters of the operation).
Th e list of applied operations is presented at the end of the paper (Appendix 1). In the
experiments we assumed that chromosomes-data could maximally contain 30 data,
i.e., 30 7-bit blocks of genes. Each use of excessive number of data caused drastic
decrease in fi tness of the AEP. Th roughout the experiments, we assumed maximal
number of operations, which could be possessed by each AEP: 12 operations.
Initially, every AEP contained one operation and one set of data from two diff erent
populations. Consecutive populations with operations were added every 5000
of co-evolutionary cycles if generated AEPs were not able to achieve progress
in performance within this period. Populations of operations and data could be
also replaced by newly created populations when the contribution of substituted
population to AEPs was considerably less than the contribution of the remaining
populations. Th e contribution of the population was measured as average fi tness
of individuals belonging to that population.

In the experiments, the infl uence of the following parameters on the eff ectiveness
of the evolutionary process was tested:

— the number of individuals (in each population);
— mutation probability (in each population);
— the number of individuals taking part in the tournament (in each popu-

lation).
Such parameters as:
— crossover probability (in each population);
— cut-splice probability (exclusively in the population with data);
remained constant during the tests.

116 T. Praczyk

During the experiments, the following confi gurations of the parameters were
tested:

Table 1

Confi gurations of the parameters used in the experiments

confi guration
A (tournament,

mutation)

confi guration
B (tournament,

mutation)

confi guration
C (tournament,

mutation)

confi guration
D (tournament,

mutation)

confi guration a
(populations) confi guration aA confi guration aB confi guration aC confi guration aD

confi guration b
(populations) confi guration bA confi guration bB confi guration bC confi guration bD

confi guration c
(populations) confi guration cA confi guration cB confi guration cC confi guration cD

where

— confi guration a (populations) — all populations of equal size, 60 individuals
in each population;

— confi guration b (populations) — more individuals in the populations in-
cluding operations, 80 individuals in all populations with operations and
40 individuals in the population with data;

— confi guration c (populations) — more individuals in the populations
including data, 40 individuals in all populations with operations and 80
individuals in the population with data;

— confi guration A (tournament, mutation) — small mutation and tourna-
ment in all populations, size of tournament = 2, mutation = 0.02 in all
populations;

— confi guration B (tournament, mutation) — large mutation and tournament
in all populations, size of tournament = 8, mutation = 0.1 in all popula-
tions;

— confi guration C (tournament, mutation) — small mutation and tournament
in all populations with operations and large mutation and tournament in
the population with data, size of tournament = 2, mutation = 0.02 in all
populations with operations, size of tournament = 8, mutation = 0.1 in the
population with data;

— confi guration D (tournament, mutation) — large mutation and tournament
in all populations with operations and small mutation and tournament
in the population with data, size of tournament = 8, mutation = 0.1 in all
populations with operations, size of tournament = 2, mutation = 0.02 in
the population with data;

117Organization of the evolutionary process responsible for creating neural networks...

All the confi gurations presented above were defi ned arbitrary by the author.
In the experiments we decided that large size of the tournament should be

combined with large mutation and vice versa. Numerous tournament causes fast
convergence of Canonical GA to a single solution that is very oft en far from the
optimality. To avoid such situation we combine large tournament with large mutation.
In the case when selecting individuals for reproduction is based on the tournament
of small size, the competition between individuals is not so rough, divergence in
a population is preserved and large mutation is not necessary.

Values of the remaining parameters, essential for the results of the tests, are
presented below:

— crossover probability (in each population): 0.7;
— cut-splice probability (exclusively in the population with data): 0.1;
— the number of co-evolutionary cycles: 50 000;
— the maximum size of NDMs: 30 rows and 33 columns;
— the probability of the random prey to select a random action: 0.3.

4.6. Experimental results

Th e results of the tests are presented in Table 2 and Table 3. During the experiments,
thirty evolutionary runs were performed for each confi guration of the parameters
considered in Table 1 (thirty ANNs were generated for each confi guration, i.e.,
30 ANNs for confi guration aA, 30 ANNs for confi guration aB and so on).

Table 2
Th e best confi gurations tested in the experiments

conf. c (populations) conf. D (tournament, mutation)

(1) (2)

Average fi tness of ANNs 2602 2826.9

% of successes 60.7% 69%

Th e results of the experiments presented in Table 2 and Table 3 can make up
the base to defi ne general rules of organizing the evolutionary process in AE. Th e
analysis of the results of the tests allows us to formulate the following conclusions.
First, as for the size of individual populations it seems that the most benefi cial
solution to ANNs created is when populations with data contain more individuals
than populations with operations (confi guration c). It is apparent in the column (1)
of Table 2. Th e results incorporated in this column include all the confi gurations

118 T. Praczyk

in which populations with data contained 80 individuals whereas populations
with operations contained 40 individuals. More than 60% of ANNs created in
these confi gurations were successful ANNs, i.e., ANNs which resulted in capturing
the prey in all thirty scenarios (such ANNs achieved complete success). Th e
second conclusion involves the probability of mutation and conditions of selecting
individuals for reproduction. Th e results of the tests imply that the best solution
in this case is slight mutation and sparse tournament in the population with data
and the opposite situation, i.e., large mutation and numerous tournament, in the
populations with operations [column (2) in Table 2, confi guration D]. In the case
considered, almost 70% of ANNs were successful. Th e similar result was achieved in
the confi gurations with slight mutation and sparse tournament in all the populations
— 63% of ANNs were successful in this case (confi guration A).

Table 3
Th e best confi gurations tested in the experiments

conf. aA conf. aD conf. bD conf. cA conf. cC conf. cD

(1) (2) (3) (4) (5) (6)

Average fi tness of ANNs 2755.8 2707.4 2793.3 2788.6 2589.6 2984.8

% of successes 63% 66% 56% 73% 52% 85%

With regard to confi gurations considered in Table 3, the best of them is the
confi guration cD (the combined confi guration of the confi gurations c and D). Using
this confi guration enabled us to generate ANNs that were in 85% successful. What is
more, successful ANNs were created, in this case, very fast and based on rather simple
AEPs. In this instance, AEPs included on average 2.8 operations and 19.9 data.

5. Summary

AE is ANN encoding method in which a network is represented in the form of
AEP. Th e task of AEP is to create and to fi ll in NDM with values. Once AEP fi nishes
its work ANN is created based on the information contained in NDM. In AE, to
create AEPs and in consequence ANNs, GAs are used.

To make AE an eff ective tool for creating ANNs, it is necessary to appropriately
organize all the evolutionary process responsible for generating AEPs, i.e., it is
necessary to properly select values of diff erent parameters controlling the evolutionary
process mentioned. To determine optimal conditions of the evolution in AE, the
experiments in the predator-prey problem were performed. Th e task of ANNs

119Organization of the evolutionary process responsible for creating neural networks...

created during the experiments was to control a team of autonomous agents
called predators. A common goal of the predators was to grasp a fast moving prey
behaving according to a simple stochastic strategy. To succeed the common job of
the predators, they had to cooperate.

Since AEPs evolve in many populations, the organization of all the evolutionary
processes requires determining parameters defi ning the evolution in each
population. In the experiments, an infl uence of the following parameters on the
eff ectiveness of the evolutionary process was tested: the number of individuals (in
each population), mutation probability (in each population), and the number of
individuals taking part in the tournament (in each population). Such parameters
as: crossover probability (in each population) and cut-splice probability (exclusively
in the population with data) remained constant during the tests. Th e experiments
were conducted for diff erent confi gurations of the parameters selected. Each
confi guration diff ered from the others in values of the parameters selected. Th e
experiments showed that the most advantageous solution to ANNs is when
populations with data contain more individuals than populations with operations.
Moreover, it turned out that the most eff ective ANNs arise when in the population
with data we deal with slight mutation and sparse tournament whereas in the
populations with operations we deal with the opposite situation, i.e., with large
mutation and numerous tournament.

Received July 10 2008, revised December 2008.

Appendix 1 — List of operations used in experiments

CHG — Update of element. Both new value and address of element are located in para-
meters of operation.
CHGC0 — Update of certain number of elements in column. Index of column, index of fi rst
element in column that will be changed, number of changed elements and a pointer to data,
where new values of elements are memorized, are located in parameters of operation.
CHGC1 — Update of certain number of elements in column. Index of column, index of
fi rst element in column that will be changed, number of changed elements and new value
for column’s elements, the same for all elements, are located in parameters of operation.
CHGC2 — Update of certain number of elements in column. New value of every element
is sum of operation’s parameter and current value of this element. Th e second parameter of
operation is index of column. Th e third and the fourth parameter of operation determine
respectively the number of changed elements and index of the fi rst element in column that
will be changed.
CHGC3 — Th e part of elements from one column are transformed to another column.
Both columns are indicated by parameters of operation. Th e number of transferred ele-

120 T. Praczyk

ments and index of the fi rst element in column that will be transferred are also included
in parameters of operation.
 CHGC4 — An update of certain number of elements in column. New value of every element
is a sum of current value of this element and respective value from memory of a program.
An index of the column, an index of the fi rst element in the column that will be changed,
the number of changed elements and a pointer to data, where ingredients of individual
sums are memorized, are located in parameters of operation.
CHGR0 — like CHGC0 but an update refers to row of matrix.
CHGR1 — like CHGC1.
CHGR2 — like CHGC2.
CHGR3 — like CHGC3.
CHGR4 — like CHGC4.
CHGM0 — Change of block of elements. Elements are updated in columns, in turn, one
aft er another, starting from element pointed by parameters of operation. Th e number of
changed elements and place in the memory where new values for elements are located are
determined by parameters of operation.
 CHGM1 — like CHGM0 but new value of every element is a sum of its current value and
parameter of operation.
 CHGM2 — like CHGM0 but new value of each element is a sum of its current value and
value from memory part of a program. Th e number of changed elements and place in the
memory where arguments of individual sums are located are determined by parameters
of operation.
JMP — Jump operation. Th e number of jumps, a pointer to next operation and new values
of registers are located in parameters of jump operation.

REFERENCES
 [1] M. Alden, A. Van Kesteren, R. Miikkulainen, Eugenic Evolution Utilizing a Domain Mo-

del. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002),
San Francisco, CA, Morgan Kaufmann, 2002.

 [2] M. V. Butz, Rule-based Evolutionary Online Learning Systems: Learning Bounds, Classifi cation,
and Prediction, University of Illinois, IlliGAL Report no. 2004034, 2004.

 [3] A. Cangelosi, D. Parisi, S. Nolfi, Cell division and migration in a genotype for neural networks,
Network: computation in neural systems, 5, 4, 1994, 497-515.

 [4] D. Curran, C. O’Riordan, Applying Evolutionary Computation to Designing Networks: A Study of
the State of the Art, National University of Ireland, technical report NUIG-IT-111002, 2002.

 [5] D. Floreano, J. Urzelai, Evolutionary robots with online self-organization and behavioural
fi tness, Neural Networks, vol. 13, 2000, 431-443.

 [6] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison
Wesley, Reading, Massachusetts, 1989.

 [7] F. Gruau, Neural network Synthesis Using Cellular Encoding and Th e Genetic Algorithm, PhD
Th esis, Ecole Normale Superieure de Lyon, 1994.

121Organization of the evolutionary process responsible for creating neural networks...

 [8] H. Kitano, Designing neural networks using genetic algorithms with graph generation system,
Complex Systems, vol. 4, 1990, 461-476.

 [9] K. Krawiec, B. Bhanu, Visual Learning by Coevolutionary Feature Synthesis. IEEE Trans. on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 35, 2005, 409-425.

[10] S. Luke, L. Spector, Evolving Graphs and Networks with Edge Encoding: Preliminary Report,
In John R. Koza, ed., Late Breaking Papers at the Genetic Programming 1996 Conference,
Stanford University, CA, USA, Stanford Bookstore, 1996, 117-124.

[11] M. Mandischer, Representation and Evolution of Neural Networks, in Albrecht R. F., Reeves,
C. R., Steele U. C., ed., Artifi cial Neural Nets and Genetic Algorithms, Springer Verlag, New
York, 1993, 643-649.

[12] G. F. Miller, P. M. Todd, S. U. Hegde, Designing Neural Networks Using Genetic Algorithms,
Proceedings of the Th ird International Conference on Genetic Algorithms, 379-384 of Schaff er
J. D., 1989.

[13] D. E. Moriarty, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks, PhD
thesis, Th e University of Texas at Austin, TR UT-AI97-257, 1997.

[14] S. Nolfi, D. Parisi, Growing neural networks, in C. G. Langton, ed., Artifi cial Life III, Addison-
Wesley, 1992.

[15] P. Nordin, W. Banzhaf, F. Francone, Effi cient Evolution of Machine Code for {CISC} Architec-
tures using Blocks and Homologous Crossover, Advances in Genetic Programming III, L. Spector
and W. Langdon and U. O’Reilly and P. Angeline, 1999, 275-299.

[16] D. Polani, R. Miikkulainen, Eugenic Neuro-Evolution for Reinforcement Learning, in Proce-
edings of the Genetic and Evolutionary Computation Conference (GECCO 2000), Las Vegas,
NV, 2000.

[17] M. Potter, Th e Design and Analysis of a Computational Model of Cooperative Coevolution, PhD
thesis, George Mason University, Fairfax, Virginia, 1997.

[18] M. Potter, K. A. De Jong, Evolving neural networks with collaborative species, in T. I. Oren, L. G.
Birta, ed., Proceedings of the 1995 Summer Computer Simulation Conference, 1995, 340-345.

[19] T. Praczyk, Evolving co-adapted subcomponents in Assembler Encoding, International Journal
of Applied Mathematics and Computer Science, 17, 4, 2007.

[20] T. Praczyk, Procedure application in Assembler Encoding, Archives of Control Science, vol. 17,
53, no. 1, 2007, 71-91.

[21] T. Praczyk, Using genetic algorithms and assembler encoding to generate neural networks,
Computing and Informatics, 2008 (in press).

[22] T. Praczyk, Modular networks in Assembler Encoding, Computational Methods in Science and
Technology, CMST 14, 1, 27-38.

[23] J. W. Prior, Eugenic Evolution for Combinatorial Optimization, Master’s thesis, Th e University
of Texas at Austin, TR AI98-268, 1998.

T. PRACZYK

Organizacja procesu ewolucyjnego w kodowaniu asemblerowym
Streszczenie. Kodowanie asemblerowe jest metodą wykorzystującą metody ewolucyjne do tworzenia
sieci neuronowych. W kodowaniu asemblerowym sieci neuronowe ewoluują w wielu oddzielnych
populacjach. Stworzenie pojedynczej sieci neuronowej wymaga połączenia elementów pochodzących

122 T. Praczyk

z różnych populacji. Aby sieci neuronowe tworzone w ten sposób były wysokiej jakości konieczne
jest odpowiednie sterowanie ewolucją w każdej populacji. Artykuł prezentuje wyniki badań, których
głównym celem było określenie zasad prowadzenia ewolucji w Kodowaniu Asemblerowym.
Słowa kluczowe: ewolucyjne sieci neuronowe
Symbole UKD: 007

