PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikroelektronika próżniowa

Identyfikatory
Warianty tytułu
EN
Vacuum microelectronics
Konferencja
Kongres Polskiego Towarzystwa Próżniowego ; Krajowa Konferencja Techniki Próżni (4 ; 8 ; 21-24.09.2008 ; Janów Lubelski, Polska)
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono aktualny stan wiedzy w stosunkowo nowej dziedzinie techniki nazwanej mikroelektroniką próżniową. Opisano właściwości miniaturowych urządzeń mikroelektroniki próżniowej, stosowane materiały i technologie. Przedstawiono podstawowe parametry oraz zastosowania miniaturowych źródeł elektronów, w których katodę stanowią matryce mikroemiterów polowych.
EN
In the work, a state of the art of a relatively new field of technology, called vacuum microelectronics, is presented. Properties of the miniature devices of vacuum microelectronics, applied materials and processes of fabrication are described. The main parameters and applications of the miniature electron sources with field-emitters array cathode are presented.
Rocznik
Strony
58--62
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki
Bibliografia
  • [1] Brodie I., Spindt C. A.: Vacuum Microelectronics, Advances in electronics and electron physics. Vol. 83, Ed. Academic Press, 1992, 2-106.
  • [2] Spindt C. A.: A thin film field - emission cathode. J. Appl. Phys. 39 (1968) 3504-3505.
  • [3] Czarczyński W.: Mikroelektronika próżniowa. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2000.
  • [4] Górecka-Drzazga A.: Mikro- i nanoemitery polowe. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2008.
  • [5] Tomaszek R., Znamirowski Z., Pawłowski L., Wojnakowski A.: Temperature behaviour of titania field emitters realized by suspension plasma spraying. Surface and Coatings Technology 201, 5 (2006) 2099-2102.
  • [6] Grabiec P., Gotszalk T., Radojewski J., Edinger K., Abedinov N., Rangelow I. W.: SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis. Microelectronic Engineering 61-62 (2002) 981-986.
  • [7] Bryl R., Błaszczyszyn R.: The interaction of platinum with W [111] tip: diffusion and changes of tip morphology. 19th International Vacuum Nanoelectronics Conference & 50th IFES, 17-20 July 2006, Guilin, China, Technical Digest, pp. 439.
  • [8] Ciszewski A., Szczudło Z., Losovyj Y. B.: Field electron emission study of Ti and Hf adsorption on W. Proc. 2nd Intern. Workshop on Vacuum Microelectronics, 11-13 July 1999, Wrocław, Poland, pp. 62-64.
  • [9] Czerwosz E.: Zimna emisja elektronów z warstw nanostruktur węglowych z domieszką metalu. Rozprawa habilitacyjna, Wydział Fizyki Uniwersytetu Warszawskiego, 2002.
  • [10] Czerwosz E., Dłużewski P., Kęczkowska J., Kozłowski M., Suchańska M., Wronka H.: Nanokrystality palladu i ich właściwości. Mat. I Konf. Kraj. Nanotechnologii, 26-28 kwietnia 2007, Wrocław, s. 188.
  • [11] Jung J. H., Ju B. K., Lee Y. H., Oh M. H., Jang J.: Enhancement of electron emission efficiency and stability of molybdenum field emitter array by diamond - like carbon coating. Proc. Intern. Electron Devices Meeting, 8-11 Dec. 1996, San Francisco, CA, USA, pp. 293-295.
  • [12] Chen J., Xue K., An J., Ke N., Xu J. B.: Micro and nano scale field electron emission properties of transition metal - fullerene compound TiC60 film. 16th Intern. Vacuum Microelectronics Conference, 7-11 July 2003, Osaka, Japan, Technical Digest, pp. 153-154.
  • [13] Baba A., Yoshida T., Asano T.: Field emission characteristics of defect - controlled polyimide tunneling cathode. J. Vac. Sci. Technol. B 22, 3 (2004) 1353-1357.
  • [14] Waite M. S., Bishop H. E., Brierly M., Tuck R. A., Taylor W.: Alternative field electron emission characteristics from graphite - insulator composite layers. 18th International Vacuum Nanoelectronics Conference, 10-14 July 2005, Oxford, UK, Technical Digest, pp. 332-333.
  • [15] Fung Y. M., Cheung W. Y., Wilson I. H., Chen D., Xu J. B., Wong S. P., Kwok R. W.: Electron field emission characteristics of textured Silicon surfaces. J. Vac. Sci. Technol. B 19, 3 (2001) 884-887.
  • [16] Jin A. Z., Wang Z. L., Li H. J., Luo Q., Yang H. F., Cui Z., Gu C. Z.: High aspect ratio Pt field emitters fabricated by electron beam assisted deposition, 18th International Vacuum Nanoelectronics Conference. 10-14 July 2005, Oxford, UK, Technical Digest, pp. 229-230.
  • [17] Li C. Y., Liu X., Chen J., Deng S. Z., Xu N. S.: Uniform field emission from CuO nanowires prepared by thermal oxidation method. 18th International Vacuum Nanoelectronics Conference, 10-14 July 2005, Oxford, UK, Technical Digest, pp. 213-214.
  • [18] Li Z. L., Deng S. Z, Chen J., She J. C., Chen Y. Z., Xu N. S.: Synthesis and field emission properties of large - scale oxide tubular nanostructures. 18th International Vacuum Nanoelectronics Conference, 10-14 July 2005, Oxford, UK, Technical Digest, pp. 215-216.
  • [19] Ke Y. L., Zhou J., Chen J., Deng S. Z., Xu N. S.: Luminescent tubes on MoO2 nanowire cold cathode. 18th International Vacuum Nanoelectronics Conference, 10-14 July 2005, Oxford, UK, Technical Digest, pp. 362-363.
  • [20] Schwoebel P. R., Spindt C. A., Holland C. E.: Spindt cathode tip processing to enhance emission stability and high - current performance. J. Vac. Sci. Technol. B 21, 1 (2003) 433-435.
  • [21] She J. C., Xu N. S., Huq S. E., Deng S. Z., Chen J.: Silicon tips with ultrathin amorphous diamond apexes. Appl. Phys. Lett. 81, 22 (2002) 4257-259
  • [22] Dijon J., Bridoux C., Fournier A., Geffraye R., Monsabert T. G., Montmayeul B., Levis M., Sarrasin D., Meyer R., Dean K., Coli B., Johnson S., Hagen C., Jaskie J.: Towards a low - cost high - quality carbon - nanotube field - emission display. Journal of the SID 12, 4 (2004) 373-378.
  • [23] http://216.122.210.132/product/DrQduct.htm. Field Emission Display Module FE524M1 5.2"-1/4 VGA Monochrome (online)
  • [24] Choi W. B. et al.: Fully sealed, high - brightness carbon - nanotube field - emission display. Appl. Phys. Lett. 75, 20 (1999) 3129-3131.
  • [25] http://216.122.210.132/news/ian25_00.htm: pixTech announces joint development agreement with AUDI oraz http://216.122.210.132/news/aug14_00.htm: PixTech announces delivery of 12.1-inch full color field emission displays to U. S. ARMY
  • [26] Hirano T., Kanemaru S., Itoh J.: A new metal - oxide - semiconductor field - effect - transistor - structured Si field emitter tip. Jpn. J. Appl. Phys. 35 (1996) Pt. 2, No. 7a, pp. L861-L863.
  • [27] Itoh J.: Development and applications of field emitter arrays in Japan. Applied Surface Science 111 (1997) 194-203.
  • [28] Kenny T. W., Waltman S. B., Reynolds J. K., Kaiser W. J.: Micromachined silicon tunnel sensor for motion detection. Appl, Phys. Lett. 58, 1 (1991) 100-102.
  • [29] Busta H. H., Pogemiller J. E., Zimmerman B. J.: The field emitter triode as a displacement/pressure sensor. J. Micromech. Microeng. 3 (1993) 49-56.
  • [30] Marsch G.: Data storage gets to the point. Materials Today, Febr. 2003, 38-43.
  • [31] Chang T. H. P., Thomson M. G. R., Kratschmer E., Kim H. S., Yu M. L., Lee K. Y.: Electron - beam microcolumns for lithography and related applications. J. Vac. Sci. Technol. B14, 6 (1996) 3774-3781.
  • [32] Curtis C., Hsieh K.: Spacecraft mass spectrometer ion source employing field emission cathodes. Rev. Sci. Instrum., 57, 5 (1986) 989-990.
  • [33] Huq S. E., Kent B. J., Stevens R., Lawes R. A., Xu N. S., She J. C.: Field emitters for space application. J. Vac. Sci. Technol. B19, 3 (2001) 988-991.
  • [34] Nanoprobe, 7042 Aidlingen 3, Germany; www.nanoprobe.com
  • [35] Mitterauer J.: Micropropulsion for smali spacecraft: a new challenge for FEEP (Field Effect Electric Propulsion) and MILMIS (Miniaturized Liquid Metal Ion Sources). 15th International Vacuum Microelectronics Conference, 7-11 July 2002, Lyon, France, Technical Digest p. KO9.
  • [36] ISE Electronic Corp., Mie, Japan; www.noritake-elec.com.
  • [37] Matsumoto T., Mimura H.: High intensity pulse X-ray generation by using graphite - nanocrater cold cathode. 17th International Vacuum Microelectronics Conference, 11-16 July 2004, Cambridge, USA, Technical Digest pp. 204-205.
  • [38] Espinosa R. J.: X-ray tubes incorporating carbon nanotube cathodes. Proc. JEEE V International Vacuum Electronics Conference, 27-29 Apr. 2004, Monterey, USA, pp. 253-254.
  • [39] Choi H. Y., Shon C. W., Kim J. U.: Biomedical diagnostic technology using carbon nanotubes X-ray source. 21st International Vacuum Microelectronics Conference, 13-17 July 2008, Wrocław, Poland, Technical Digest pp. 52-53.
  • [40] SRI International, Menlo Park, CA, USA; http://www.sri.CQm/psd/microsvs.
  • [41] Space Science & Technology Department, Rutherford Appleton Laboratory, Didcot, UK; www.cclrc.ac.uk
  • [42] El-Mul Technologies, Ltd, Sereq, 81104 Yavne, Israel; www.el-mul.com.
  • [43] Applied Nanotech, Inc., Austin TX 78758, USA, Carbon nanotube gated electron source; www.nano-proprietary.com.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0025-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.