PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Dynamic Piezoelectric Contact Problem

Identyfikatory
Warianty tytułu
Konferencja
International Conference on Modelling and Simulation of the Friction Phenomena in the Physical and Technical Systems "FRICTION 2008" (5 ; 31.05-1.06.2008 ; Warsaw, Poland) ; French-Polish Seminar of Mechanics (16 ; 31.05-1.06.2008 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
We consider a mathematical model, which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. The material's behavior is modeled with a nonlinear electro-viscoelastic constitutive law; the contact is frictionless and is described with the normal compliance condition and a regularized electrical conductivity condition. We state the variational formulation for the problem, and then we introduce a fully discrete scheme, based on the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the time derivatives. We implement this scheme in a numerical code and, in order to verify its accuracy, we present numerical simulations in the study of a two-dimensional test problem.
Rocznik
Strony
23--32
Opis fizyczny
Bibliogr. 12 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • Alart, P., Curnier, A., 1991, A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg, 92, 353-375.
  • Barboteu, M., Sofonea, M., Solvability of a dynamic contact problem between a piezoelectric body and a conductive foundation, submitted to Applied Mathematics and Computation.
  • Batra, R.C., Yang, J.S., 1995, Saint-Venant's principle in linear piezoelectricity, Journal of' Elasticity, 38, 209-218.
  • Bisegna, P., Lebon, F., Maceri, F., 2002, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact Mechanics, J.A.C. Martins and Manuel D.P. Monteiro Marques (Eds.), Kluwer, Dordrecht, 347-354.
  • Han, W., Sofonea, M., 2002, Quasistatic Contact Problems in Yiscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI- Intl. Press, Sommerville, MA.
  • Lerguet, Z., Shillor, M., Sofonea, M., 2007, A frictional contact problem for an electro-viscoelastic body, Electronic Journal of Differential Equations, paper 170, 1-16.
  • Maceri, F., Bisegna, P., 1998, The unilateral frictionless contact of a piezoelectric body with a rigid support, Mathematical and Computer Modelling, 28, 19-28.
  • Martins, J.A.C., Odeń, J.T., 1987, Existence and uniqueness results for dynamic contact problems with non-linear normal and friction interface laws, Non-linear Analysis TAM, 11, 407-428.
  • Minors, S., 2006, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete and Continuous Dynamical Systems - Series B, 6, 1339-1356.
  • Patron V.Z., Kudryavtsev, B.A., 1988, Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gordon & Breach, London.
  • Shillor, M., Sofonea, M., Telega, J.J., 2004, Models and Variational Analysis of Quasistatic Contact, Lect. Notes Phys., 655, Springer, Berlin Heidelberg.
  • Sofonea, M., Essoufl, El H., 2004, Quasistatic frictional contact of a viscoelastic piezoelectric body, Adv. Math. Sci. Appl., 14, 613-631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0024-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.