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Abstract. The main goal of the paper is to outline a new Artificial Neural Network (ANN) encoding
method called Assembler Encoding (AE). In AE, ANN is encoded in the form of a program (Assembler 
Encoding Program — AEP) of linear organization and of a structure similar to the structure of a simple 
assembler program. The task of AEP is to create the so-called Network Definition Matrix (NDM)
including the whole information necessary to produce ANN. To create AEPs, and in consequence 
ANNs, genetic algorithms are used.
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1. Introduction

In recent years, an increasing interest in two domains of artificial intelligence,
i.e. in evolutionary computation and in artificial neural networks (ANNs), has
been noticed. Evolutionary techniques usually are used as global optimization 
methods. In turn, ANNs are applied in such problems as for example: approximation, 
identification, feature extraction, reinforcement learning. Successes in both domains
resulted in arising a new combined domain called neuroevolution. It assumes using 
evolutionary approach to search for effective ANNs. Evolution of ANNs proceeds like
the evolution of humans. That is, each ANN is represented in the form a genotype,
i.e. a chromosome or a set of chromosomes. The chromosomes include entire
information necessary to create ANN. The chromosomes encoding different ANNs
are concentrated in one or more populations. During the evolution, the chromosomes 
are replaced by their genetically modified offspring arisen as a result of executing
various genetic operators on parental chromosomes. Using a rule, according to 
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which a genetic material of better chromosomes, i.e. the chromosomes encoding 
better ANNs, has a greater chance to survive than the genetic material of worse 
chromosomes, results in better and better ANNs generated during the evolution.

Using Evolutionary Algorithms (EAs) to search for effective ANNs is inseparably
associated with encoding of the latter. Even thought the evolutionary techniques 
can operate immediately on ANNs, in most cases the evolution is carried out on 
a genotypic level, i.e. on the level of ANNs encoded (i.e. chromosomes). In the 
paper, a new ANN encoding scheme, called Assembler Encoding (AE), is outlined. 
It assumes that each ANN is represented in the form of the program (AEP — 
Assembler Encoding Program) of a structure similar to the structure of a simple 
assembler program, i.e. it contains an executive part with operations and a memory 
part with data. The task of AEP is to create the matrix called Network Definition
Matrix (NDM) that includes the entire information necessary to construct ANN. 

2. Neuroevolution

Successes of the evolutionary approach in solving multifarious problems inspired 
scientists to make an attempt to apply artificial evolution to search for effective
ANNs. The fact that a shape of the human brain, modeled by ANN, is determined
in a chromosome and undergoes the evolution was no fewer important inspiration 
for researchers to undertake this problem. In fact, the evolution of ANNs does 
not differ from evolutionary searching for solutions in other problems. The only
issue, that should be solved before EAs can be used to produce ANNs, is presenting 
ANN in the form of a genotype appropriate for evolutionary technique chosen, e.g. 
binary string, real valued vector or a tree. Figure 1 depicts the simple diagram of 
evolutionary design of ANNs [1]. Initially, a random population of ANNs encoded 
(chromosomes representing ANNs) is generated. Then, the process of selection,
mutation, and recombination (optionally) takes place which results in arising 
offspring. In the next step, the offspring is decoded, i.e. all newly created individuals
are converted into ANNs. Next, each newborn ANN can be trained by means of 
some learning algorithm (BackPropagation, Q-learning etc.). Once the learning 
process is finished, all ANNs are tested and then evaluated, i.e. a fitness is assigned
to each of them (e.g. each ANN is used to control Autonomous Underwater Vehicle 
(AUV)). The evaluation of each ANN depends on its effectiveness in performing
a task (e.g. each ANN which effectively controlled AUV obtains good fitness whereas
ANNs which were ineffective obtain appropriately worse evaluations). In the last
step of the evolutionary cycle, the fitness assigned to each ANN is also assigned
to a corresponding genotype. The fitness of each genotype is used by EA to produce
a next generation of ANNs encoded. In the consecutive generations, genetic material 
included in genotypes, which represented effective ANNs, has greater chance to
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survive than a material contained in genotypes representing ineffective ANNs.
Thus, better and better ANNs are created. The evolutionary cycle described above
is repeated many times until an assumed stopping criterion is satisfied.

Fig. 1. Evolutionary design of ANN

2.1. Levels of evolution of ANNs

In general, the evolution of ANNs can be performed on various levels and 
can involve different elements of ANN [33]. In order to completely define ANN, 
it is necessary to determine such elements as: the topology of ANN, transfer functions 
of each neuron, and weights of interneuron connections. Equally important as 
fixing the architecture of ANN is to define a learning process of ANN. That is,
it is necessary to select a learning method and to determine its parameters. Both 
the architecture and the learning procedure can be determined by means of the 
evolution. Although the evolution can be a tool whereby complete ANN can be 
defined, this is not always necessary. Sometimes, we only need to determine some
elements of ANN, e.g. only the topology. Below, layers of the evolution in ANNs 
are presented. 

2.1.1. Transfer functions

In this case, we deal with a population of chromosomes encoding assignments 
of functions to neurons. ANNs created based on the assignments are trained and 
put to the test. The result of the test is used to evaluate the assignments and to bias
the evolution towards better assignments. Usually, the evolution of the assignments 
takes place together with the evolution of topologies of ANNs [11, 31].
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2.1.2. Evolution of connection weights

As in the previous case, the evolution of connection weights also assumes 
a fixed structure of ANN (e.g. [6, 9]). Both the topology of ANN and the transfer
functions of individual neurons have to be known before the evolution is started. 
Learning algorithms commonly used to adjust the connection weights to the task 
solved can be trapped in locally optimal weights what in turn can lead to difficulties
in creating effective ANNs. What is more, the algorithms mentioned frequently
require a differentiability of the function being optimized during the learning.
Unfortunately, in real problems this condition cannot be always satisfied. In order
to overcome the problems above, EAs can be used. The connection weights can be
fixed solely by means of the evolution or evolutionary determined values of weights
can only constitute starting values to the process of ANN learning. In the latter 
case, the role of EA is to generate roughly optimal weights whereas the task of the 
learning algorithm is to find an optimum near the point fixed be EA.

2.1.3. Evolution of topology 

The topology is the next element of the architecture of ANN that can be determined
by means of the evolution (e.g. [3, 12, 16, 19]). Usually, a designer of ANN does not 
have sufficient knowledge to determine the structure of ANN by hand. For this reason,
other methods have to be used. Constructive and destructive methods were specially 
designed for that purpose. The constructive methods incrementally develop ANN
starting from a small architecture. Initially, ANN has a small number of components 
to which next components are gradually added until a resultant ANN fully meets 
the requirements imposed. In turn, the destructive methods prepare a large fully 
connected ANN and then try to remove individual elements of ANN, such as synaptic 
connections and neurons. However, since both methods mentioned above are a form 
of hill-climbing and can be trapped in locally optimal topologies their use to construct 
ANNs is often limited. EAs are an alternative method to form neural topologies.
A typical procedure to construct ANN looks in this case in the following way. First, 
a population of neural topologies is produced by EA. To this end, each topology has 
to be encoded and presented in the form of a genotype. Then, connection weights in
each blank ANN are initialized (usually at random). In the next step, each ANN is 
trained. The learning algorithm chosen by the designer adjusts weights of interneuron
connections to the problem solved. ANNs prepared in this manner undergo the 
evaluation which is then used by EA to guide the evolution towards better and better 
topologies (genotypes encoding better topologies have greater chance to survive in 
consecutive generations than genotypes representing worse topologies).

2.1.4. Learning rules and parameters of the learning algorithm

The next element deciding about quality of ANN is the learning algorithm used
to train the network (e.g. [5, 30]). Usually, both the algorithm and its parameters 
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are chosen by the designer. It seems that a better approach is to fix the parameters
of the learning algorithm by means of the evolution. Sometimes, a key issue is also 
to assign learning rules to individual interneuron connections. We deal with such 
a situation when the learning of ANN is carried out, for example, based on Hebb 
rules [5, 10]. There are several such rules and an assignment of appropriate rules
to connections is crucial to the quality of ANN constructed. 

2.1.5. Simultaneous evolution 

One of the most interesting issues in neuro-evolution is simultaneous evolution 
of different elements of ANN [8, 15, 17, 18]. Commonly, the evolution involves
such elements as topology and connection weights. Other possibility is to evolve 
the topology and assignments of learning rules to interneuron connections [27]. 
Connection weights are, in this case, initialized at random. 

In the paper, the solution is proposed, called Assembler Encoding (AE), which 
makes it possible to simultaneously evolve: the topology, connection weights, 
assignments of transfer functions to neurons and learning rules (Hebb rules) to 
connections. In fact, AE can be used to produce any ANN, which can be defined in
the form of a matrix of parameters. AE originates from cellular [8] and edge encoding 
[15] although it also has features common with Linear Genetic Programming 
presented among other things in [13, 20]. AE like cellular and edge encoding, is a set 
of operations grouped in a chromosome or as we can see in a set of chromosomes. 
However, there are two significant differences between the schemes mentioned
above. First, chromosomes in AE are sequences of linearly ordered data or operations 
with arguments while in cellular and edge encoding, chromosomes take the form 
of trees. Second, an execution of individual operations in AE does not create ANN 
in a direct way, as it is in cellular and edge encoding. In AE, the whole information 
necessary to create ANN is stored in a special matrix called Network Definition
Matrix (NDM) produced by Assembler Encoding Program (AEP). Initially, NDM is 
designed and ones AEP stops working ANN is constructed based on the information 
included in NDM.

3. Assembler Encoding — fundamentals

There are three key elements of AE — a program (AEP), the matrix representing
ANN (NDM), and two auxiliary registers. AEP is an ordered set of procedures 
with operations and data. The operations included in the procedures possess
parameters. In majority of cases, the operations determine two things, namely: 
addresses of elements changed (in NDM) and new values of these elements. AEP 
runs all procedures in turn. The operations included in each procedure are executed
one after another, changing elements of NDM. They alter one or more elements of



400 T. Praczyk

NDM. The kind of change depends on the type of operation; in turn, the address of
change is located in the registers and arguments of the operation (detailed analysis 
of registers’ role is presented in the section where construction of modular ANNs 
is described). Once AEP ends working, ANN is created based on the information 
stored in NDM. Figure 2 depicts a diagram of AE.

Fig. 2. Diagram of AE (Operation1 from a single-procedure AEP uses three consecutive data 
to change NDM)

3.1. Assembler Encoding Program (AEP)

AEP is an ordered set of procedures composed of a sequence of operations 
(a code part of the procedure) and data (a data part of the procedure). In principle, 
we deal with two classes of AEPs, i.e. single-procedure and multi-procedure AEPs. 
The single-procedure AEPs, as the name implies, contain a single procedure whereas
the multi-procedure AEPs contain many procedures. The task of AEP is to create
NDM defining ANN. To create NDM, the procedures are executed in turn, one
after another. The execution of a procedure is connected with executing all its
operations. Each procedure changes some fragment of NDM dependant on values 
of parameters of a given procedure (initially all elements in NDM are set to 0 what 
means that there are not any connections between neurons). AEP can contain many 
different procedures or it can also contain many instances of the same procedure
differing in values of parameters.
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The process of creating ANN consists of two sub-processes. First of them
is responsible for generating NDM and is performed by AEP. The second process
uses NDM to construct ANN. Both sub-processes can be run in sequential manner, 
i.e. one after another, or they can perform concurrently. In the first case, the process
of forming NDM, by means of AEP, has to be completed to start the next process, 
i.e. the process of creating ANN based on NDM. In the second case, both sub-
processes work simultaneously. AEP creates NDM which time to time is transformed 
into ANN (only new elements are propagated). This can be viewed as a process of
growth of ANN from the childhood to the maturity [4, 14]. Between consecutive 
updates of NDM, ANN can undergo training.

Since, the process of creating ANN from NDM is completely independent of the 
process of creating NDM by means of AEP, a change of the former (for example, due 
to a change of interpretation of individual elements of NDM, i.e. values of elements 
of NDM can be interpreted as values of weights but at the same time they can also 
determine assignment of Hebb rules to individual connections within ANN) does 
not force us to change a construction of AEPs. This means that we can alter the way
of forming ANN from NDM leaving at the same time the construction of AEPs 
without any change.

3.2. Network Definition Matrix (NDM)

Network Definition Matrix, as the name implies, is the matrix defining ANN.
It stores the whole information necessary to create and to functioning ANN. This
information is included both in the size and in individual elements of NDM (it is 
assumed that all elements of NDM are always scaled to the range <-1, 1>). 

In principle, NDM can have any structure, i.e. it can define ANN in any way.
The size of NDM determines the number of neurons in ANN created. Individual
columns of NDM inform about weights of output connections of neurons but 
any other interpretation is also possible. The way of representing ANN by means
of NDM always depends on the type of ANN we want to obtain. For example, 
in the experiments reported in [25, 27], two types of ANNs were used, i.e. ANNs 
whose architecture was permanently fixed as a result of evolutionary process
as well as ANNs with Hebb learning [10, 30] whose weights undergo changes 
during “life” of ANN (successful use of ANNs with Hebb learning to control a real 
robot is presented among other things in [5, 32]). To define complete architecture
of ANN, i.e. weights, topology, transfer functions, NDM can take the form of 
a connectivity matrix (CM) [16] whose structure is presented in Fig. 4. In turn, 
to represent ANN with Hebb self-organization somewhat different construction
of NDM is necessary (it is important to remember that ANNs described above, 
i.e. ANN with Hebb learning and ANN with the whole architecture determined 
permanently, are only examples of ANNs which can be created by means of AE. 
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To create other types of ANNs, it is only enough to encode ANN in the form of 
a matrix of parameters). 

Fig. 3. The possible method of creating ANN by means of AE

Fig. 4. NDM used as CM

NDM used as CM is organized as follows. Each element of NDM determines 
synaptic weight between corresponding neurons. For example, component i,j 
defines a link from the neuron i to the neuron j. Elements of NDM unimportant 
from the point of view of the process of ANN construction, for example because 
of assumed feed-forward structure of ANN, are neglected during building ANN. 
Apart from the basic part, NDM can also possess additional columns that can 
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describe parameters of neurons, i.e. type of neuron (e.g. sigmoid, radial, linear), 
parameter of neuron and bias.

NDMs used to represent dynamical ANNs, i.e. ANNs with Hebb self-organization, 
have somewhat different structure from that of CMs described above. Each NDM
(Fig. 5), in addition to the invariable topology of ANN, also defines the process of
changes occurring in ANN during its whole “life”. As a whole, NDM includes N 
rows and Z = 2M + 2 columns where N denotes the number of hidden and output 
neurons, whereas M is the number of all neurons in ANN. Extra two columns, as in 
the previous case, include additional information concerning neurons, i.e. bias and 
value of single parameter of a neuron (in the experiments with dynamical ANNs 
only sigmoid neurons were used thus, information about the type of neuron were 
unnecessary in NDMs). The main part of NDM used to define dynamical ANN
consists of two sub-matrices of equal size (N × M). The first sub-matrix determines
the constant topology of ANN designed, i.e. it indicates which connections exist in 
ANN and which do not. Each element of this sub-matrix unequal to zero informs 
about connection between neurons. The sign of this element determines the sign
of the connection, while the value of the element determines the type of Hebb rule 
assigned to the connection. For example, value –0.2 (it is assumed that all elements 
of NDM range <–1, 1>) of element NDM [n, m] (n = 1...N, m = 1...M, neurons are 
indexed from 0 to M) informs about both the negative connection between mth and 
[n + (M – N)]th neuron (there are not connections between input neurons) and the 
plain Hebb rule that is assigned to this connection. In the experiments described 
in [27], five types of Hebb rules were used [30]:

1. Plain Hebb rule: can only strengthen the synapse proportionally to the 
correlated activity of the pre- and post-synaptic neurons,

 (1 ) ,w w xy∆ = −  (1)

where w is the synaptic weight, w corresponds to change in the weight w, 
and x, y are respectively presynaptic and postsynaptic activity of neuron.

2. Postsynaptic rule: behaves as the plain Hebb rule, but in addition it weakens 
the synapse when the postsynaptic node is active, and the presynaptic is not. 

 ( 1 ) (1 ) .w w x y w xy∆ = − + + −  (2)

3. Presynaptic rule: weakens the synapse when the presynaptic unit is active 
but the postsynaptic is not. 

 ( 1 ) (1 ) .w wx y y w xy∆ = − + + −  (3)
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4. Covariance rule: strengthens the synapse whenever the difference between
the activations of the two neurons is less than half their maximum activity, 
otherwise the synapse is weakened. In other words, this rule makes the 
synapse stronger when the two neurons have similar activity and makes 
it weaker when they do not

 

 

(1 ) ( , ) if ( , ) 0
( , ) otherwise,

w x y x y
w

w x y
− Ψ Ψ >

∆ =  Ψ  
(4)

where ( , ) tanh(4(1 ) 2)x y x yΨ = − − −  is the measure of a difference be-
tween presynaptic and postsynaptic activity. Ψ(x, y) > 0 if the difference
is higher than or equal to 0.5 and Ψ(x, y) < 0 if the difference is smaller
than 0.5.

5. “Zero” rule:

 w = 0. (5)

Each Hebb rule presented above corresponds to a different value of NDM.
The second sub-matrix of NDM incorporates learning rates necessary to update

the strength of each synaptic weight. For example, NDM [n, m] = –0.2 where  
n = 1...N and m = M...2M, informs that the learning rate used to update the 
connection between [m – M]th and [n + (M – N)]th neuron amounts |–0.2|. If there 
exists a connection between neurons but the learning rate corresponding to this 
connection amounts to zero, to update the strength of the connection, a nonzero 
value of the learning rate is used. 

Hebb rules from the first part of NDM and learning rates from its second part
are necessary to determine changes that take place in each interneuron connection. 
Each synaptic weight in ANN alters according to the following formula:

 1t t
ij ij ij ijw w w−= + ∆  (6)

where 1,t t
ij ijw w −  are the synaptic weights between the jth and ith neuron, respectively, 

after and before update and 0 1ij≤ ≤  is the learning rate.
First, once ANN is created, all weights of all nonzero connections are fixed

in some assumed manner, for example at random. Then, synaptic weights change
according to Eq. (6). All synapses can change the strength but they cannot change 
the sign, which is determined permanently in NDM. The synaptic strength cannot
grow indefinitely. All weights are from the range <0, 1>. This is possible thanks
to use of the self-limiting mechanism in all of Hebb rules mentioned above (it is 
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assumed that signals of neurons are also from the range <0, 1>). An update of 
each synaptic weight occurs once an input signal is propagated to output neurons, 
i.e. each time a decision has been taken by ANN.

Fig. 5. NDM representing dynamical ANN with Hebb self-organization

3.3. Operations

AE uses two types of the operations, i.e. four-parameter operations and three-
parameter operations. The four-parameter operations, as the name implies, have
maximally four parameters. In turn, the three-parameter operations always have exactly 
three parameters. Below, both types of the operations are described in detail.

3.3.1. Four-parameter operations

The basic task of the operations is to change elements of NDM. The change can
involve a single element or a larger set of elements of NDM. The simplest operation
changes a single element in NDM. The location of change is determined in one of
the parameters of the operation and in registers while the value of change is located 
in another parameter of the operation. 

The exact implementation of the operation changing a single element of NDM
can be presented as follows:

Fig. 6. CHG operation changing single element of NDM

In AE, it is assumed that each four-parameter operation can have maximum 
four parameters. Parameters unimportant for implementation of the operation can 
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be omitted and are marked with “*”. In the example above used was the following 
notation: NDM [i, j] is the element of NDM i = 1...NDM.width, j = 1...NDM.height, 
Ri i = 1,2 determines value of the ith register, Max_value is a scaling value which 
scales all elements of NDM to the range <–1, 1>. Additionally, in the further part 
of the paper, the following symbols are also used: D[i] is the ith data in the memory 
of a procedure and DLength is the number of memory cells. 

With regard to operations that alter a larger group of elements of NDM the 
following operations can be imagined: the change of the whole row or column, 
determination of elements of a given row (column) as sum (difference) of two
other rows (columns), addition (subtraction) of some constant to all elements 
of a row (column) etc. In the case of the operations used to change a group of 
elements, information involving both the address of change and the value of 
change is usually placed in the memory. Each operation determines only a pointer 
indicating an address in the memory where this information is accessible. In order 
to illustrate the way the operations are constructed, two examples are presented 
below.

Fig. 7. CHGC0 operation changing a part of column of NDM

Fig. 8. CHGC6 operation changing the whole column of NDM
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Both examples present a column of NDM change operation. CHGC6 fills the
whole column indicated by p0 and R2 with a value from another column (pointed by 
p1), whereas CHGC0 uses, for this purpose, data from memory. p1 indicates a place 
in the data part of a procedure where new values for column elements are located.

To create effective AEP consisting of the operations presented above it is necessary
not only to find appropriate operations and data but also to put them in a right
sequence. Another approach is to exclusively use operations whose working effect does
not depend on their sequence, e.g. operations whose outcome is a sum of a parameter 
of the operation and the value from NDM (in this case, values from NDM are not 
scaled to the acceptable range until the whole AEP stops working). In this solution, 
any sequence of operations in AEP yields the same result (in fact, some additional 
assumptions have to be satisfied to obtain such result, see further). The example
modifications of sequence dependent operations are presented below.

Fig. 9. Modification of CHG

Fig. 10. Modification of CHGC6

3.3.2. Three-parameter operations

The operations whose representatives are presented above have three features
common. First, they always have maximum four parameters. Second, an address 
solely of the first updated element of NDM is stored in the parameters of the
operation (in the case of the change of the whole column or the whole row one 
parameter of the operation is sufficient to indicate the first element; otherwise two
parameters are necessary). Addresses of the remaining elements altered by the 
operation are fixed with reference to the first element. Third, the operations whose
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examples are illustrated above always change a block of neighboring elements. 
There is not possible a situation in which altered elements are located in different
remote fragments of NDM. 

Unlike four-parameter operations, three-parameter operations use only three 
parameters, i.e. one integer and two lists. The integer determines either a new
value for all elements altered or it indicates a place in the data part of a procedure 
where new values for elements updated can be found. The lists mentioned include
numbers of columns and rows of NDM (The first list — list1, incorporates numbers 
of rows whereas the second list — list2, contains numbers of columns) which, 
in turn, indicate elements of NDM updated as a result of executing the operation. 
All possible combinations of columns and rows considered in both lists determine 
a set of elements altered by the operation. An example of implementation of the 
operation using memory to update NDM is illustrated below. A simpler version of 
the operation is shown in Fig. 12.

Fig. 11. Implementation of CHG_MEMORY operation

Fig. 12. Illustration of working of CHG_VALUE (changed elements are marked in circles)
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3.4. Modular networks

In principle, AE uses three methods to create modular neural networks. 
To accomplish modular ANNs, all methods take advantage of the same fragment 
of AEP many times. Repeated use of the same data is applied by the first method.
Each use involves other fragment of NDM. The remaining two methods are based
on executing the same piece of code in different places of NDM.

Fig. 13. Illustration of repeated use of the same data

3.4.1. Using the same data to create modular ANNs

The first method which enables AEPs to form modular ANNs is the repeated
use of the same data by different operations. To operate, the operations very often
have to refer to the information placed in the memory part of each procedure. 
Since data are common for all operations included in the same procedure, different
operations can use the same data. This means that the information contained in
the data part of a procedure can be used many times to alter various fragments of 
NDM. In consequence, NDM can include the same elements in many locations 
what is the basis to arise modular neural architectures. 

3.4.2. Jumps

The next method which allows creating modular ANNs are jumps. Each jump
indicates a place in the code part of a procedure where processing should continue 
(jumps are restricted to the part of the code that precedes the jump; only backward 
jumps are acceptable). It also determines the number of jumps and a place in the 
memory where new values for the registers (two values for every jump) are placed. 
The construction of the jump causes the same part of a code to be run in different
locations, i.e. the locations indicated by the registers that are changed at the very 
start of the jump operation.
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Figure 14 shows the situation in which the jump denoted as JMP is run two 
times. The sequence of two operations (Operation0 and Operation1) is executed three
times, but each time in a different place of NDM. The first time, the operations are
executed for initial values of the registers. The second time, after the first activation
of the jump, the registers are changed to R1 = 0, R2 = 2. The last execution of the
operations is connected with the following values of the registers: R1 = 2, R2 = 2.

Fig. 14. Using jump

3.4.3. Procedures

The third method which enables AEPs to create modular ANNs are procedures.
Each procedure can be run many times, each time in a different place of NDM.

Fig. 15. Using procedures
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Executing procedure in different regions of NDM is possible thanks to using the
registers. Every change of NDM is conducted with respect to them. To execute 
a procedure in different places of NDM, it suffices to change values of the registers
beforehand. New values for the registers are stored in the main program. The program
executes procedures in turn changing values of the registers before invoking each 
of them.

3.5. Encoding operation into chromosome

Encoding the four-parameter operations is quite simple. Each chromosome-
operation includes five blocks of genes. The first block determines a code of the
operation (e.g. 00000 denotes CHG) while the remaining blocks contain a binary 
representation of four parameters of the operation.

Fig. 16. Encoding CHG

The three-parameter operations are represented in a somewhat different way.
Their encoded form resembles classifiers from Learning Classifier Systems [2, 7].
Similarity between the classifiers and the operations encoded results from use of
the so-called don’t care symbol “#” in both cases. Each chromosome-operation 
consists of four blocks of genes. The first single-bit block determines one of two
possible variants of the operation. The second and the third block indicate location
of changes performed by the operation (don’t care symbol is used for this purpose). 
The last block specifies the value of the integer parameter of the operation.

The operations proposed in the paper have two variants. Selection of the
variant depends on the value of the first bit in the chromosome-operation. The
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first variant (CHG_VALUE) assumes that all altered elements of NDM have the 
same value. This value is stored in the integer parameter of the operation and
is located at the end of the chromosome-operation. The second option (CHG_
MEMORY) assigns other value to each changed element. New values for the 
elements are located in the data part of a procedure. The address of the first cell
in the memory, where the new values for the elements are memorized, is situated 
in the integer parameter of the operation. Selecting elements to change consists 
in determining indexes of rows and columns indicating these elements. To fix
indexes of rows (list1), the second block of genes in the chromosome-operation 
is used. In turn, the third block serves to determine indexes of columns (list2). 
To enable a single string of genes to represent a set of numbers we used don’t 
care symbol which is treated as either 0 or 1. The more don’t care symbols are in 
a string the more columns or rows it indicates. The string which does not have
any don’t care indicates a single column or row. Below, an example of use of don’t 
care to locate changes in NDM is illustrated. 

Fig. 17. Encoding three-parameter operation

3.6. Encoding AEP into chromosome(s)

There are many various methods to encode AEP into chromosome or a set
of chromosomes. In this section, a few of them are presented. First, we illustrate 
several AEP encoding schemes that assume AEPs consisting of only one procedure. 
Afterwards, the schemes are showed which encode AEPs composed of many
procedures.
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3.6.1. Scheme 1

The simplest single-procedure AEP encoding method is to place AEP within
a single chromosome. In this solution, the chromosome has to contain the whole 
information necessary to create AEP and NDM, i.e. the size of NDM (the size 
of NDM determines directly the number of neurons in ANN created. Thus, the
evolution decides about the size of ANN) and a sequence of operations and data. 
In order to know where a borderline between operations and data is, the chromosome 
has to include an additional field storing this information. If this field includes
a wrong value, i.e. the value which indicates, for example, a place in the chromosome 
which does not exist, AEP containing one operation is created. The fragment of
the chromosome behind the operation is interpreted as a list of data in this case. 
The structure of chromosome-AEP can be presented as follows (Fig. 18).

Fig. 18. AEP encoded into single chromosome (Scheme 1)

In this solution, to find effective AEPs a single population of chromosomes-
AEPs is processed. Initially random chromosomes-AEPs are gradually replaced 
with more fit individuals representing better and better AEPs, NDMs, and in
consequence ANNs. 

To enable AEPs to have different number of operations and data chromosomes-
AEPs have to have potential to change length. To prevent uncontrolled growth of 
chromosomes-AEPs, two solutions can be applied. Both solutions assume that the 
chromosomes can grow only to the certain limit. In the first solution, the limit to
which the chromosomes can extend is constant throughout the evolution. Each 
crossing of a permissible length is punished, i.e. fitness of a chromosome-AEP
which is too long is drastically decreased (penalizing also involves the chromosomes 
which are not complete, i.e. they do not include enough information to create AEP). 
In the second solution, the chromosomes grow gradually. First, only chromosomes 
consisting of not large number of operations and data are allowed. As before, too 
large chromosomes are also penalized. If the evolution cannot produce any effective
AEP within some assumed period, the limit to which the chromosomes can extend 
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is increased. In consequence, larger chromosomes encoded more complex AEPs are 
allowed in the next step of the evolution. The process of increasing permissible length
of chromosomes-AEPs continues to a threshold which cannot be exceeded.

To process the population of chromosomes-AEPs, Scheme 1 uses either 
Canonical GA or Steady State GA. 

3.6.2. Scheme 2

A next possibility of AEP encoding is to locate its components in different
chromosomes. For example, one population can store chromosomes-operations, 
the next one chromosomes-data and the last population can contain chromosomes-
programs with pointers to individuals from the remaining two populations and 
with the information about the size of NDM (Fig. 19).

Fig. 19. Illustration of Scheme 2

Scheme 2 is similar to Moriarty and Miikkulainen SANE (Symbiotic Adaptive 
NeuroEvolution) approach [17, 18] in which we have a population of blueprints 
and a population of neurons. In our solution, the chromosomes-programs are 
equivalents of the blueprints which determine which operations and data cooperate 
well together while the chromosomes-operations and the chromosomes-data are 
counterparts of neurons from SANE which determine the partial architecture of 
ANN. Since the chromosomes-programs are equivalents of AEPs, they receive 
fitness of corresponding AEPs. Chromosomes-data and chromosomes-operations
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which can contribute to many AEPs are evaluated in the same way as neurons in 
SANE. That is, they receive fitness averaged over five the best contributions of 
each of them.

To make it possible to create varied length AEPs, Scheme 2 uses analogical 
mechanism as Scheme 1, i.e. it allows the chromosomes-programs and the 
chromosomes-data to have different number of genes. The chromosomes-programs
can contain various number of pointers to operations whereas the chromosomes-data 
can include different number of binary encoded integers, i.e. data. The chromosomes-
operations unlike the remaining types of chromosomes used in Scheme 2 have 
invariable length. Since, as it turned out during preliminary experiments, the 
chromosomes-data do not grow so fast as the chromosomes-programs and usually 
do not include too many data, a procedure of limiting the length of chromosomes in 
Scheme 2 solely involves the chromosomes-programs. To prevent their uncontrolled 
growth, a similar solution is applied as in Scheme 1, i.e. each chromosome-program 
containing too many pointers to operations is punished. The limit for the number
of pointers can be fixed permanently, at the same beginning of the evolution, or
it can change in the way described in the previous section (gradual growth of the 
chromosomes-programs). In addition to the situation in which the chromosomes-
programs are too long, they are also penalized when they are too short and they 
do not represent complete AEPs. 

The next issue important for the scheme under consideration is selecting genetic
technique to apply to each of three populations. As before, Canonical GA or Steady 

Fig. 20. Illustration of Scheme 3
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State GA is used to process the population of the chromosomes-programs. To evolve 
individuals from the remaining two populations Scheme 2 applies algorithms with 
steady state replacement strategy. The population of chromosomes-operations
is managed by Eugenic Algorithm [29] or Steady State GA while the population of 
chromosomes-data is processed by Steady State GA. Using algorithms with other 
than the steady state replacement strategy to process the populations including 
operations and data may cause a situation in which a set of pointers to operations 
and data effective in one generation may became completely useless in the next
generation due to the change of entire population of chromosomes-operations and 
chromosomes-data. Creating good AEPs would be very difficult in such a case.

3.6.3. Scheme 3

This scheme is a slight modification of Scheme 2. Whereas Scheme 2 uses
sequence dependant operations, Scheme 3 is the only scheme presented in the 
paper which uses operations whose sequence does not affect working effect of AEP.
To make AEPs completely independent of the sequence of operations, no change 
in values of the registers can take place in the middle of the run of AEP. If such 
a change happened, different NDMs could be produced by means of different
sequences of operations. To prevent this one copy of the jump, i.e. the only operation 
that can serve to change values of the registers in the scheme considered (we deal 
with single-procedure AEPs), is always located at the end of each AEP generated. 
Moreover, the jump mentioned always indicates the first operation in AEP. This
way, a single execution of the whole sequence of operations preceding the jump is 
always performed in the same area of NDM.

In Scheme 3, to generate AEP the following set of chromosomes is required: 
chromosome-program, chromosomes-operations, chromosome-jump-operation, 
and chromosome-data (Fig. 20). All the chromosomes mentioned come from 
separate populations. To reward individuals from each population, the same 
procedure is applied as in Scheme 2, i.e. the chromosomes-programs receive fitness
of corresponding AEPs while fitness of individuals from the remaining populations
is averaged over the best five contributions of each of them.

To create varied length AEPs as well as to prevent uncontrolled growth of 
chromosomes, Scheme 3 uses the same solution as Scheme 2. The varied length
AEPs are created thanks to using variable length chromosomes-programs and 
chromosomes-data. Limitations concerning the length of chromosomes involve 
only the chromosomes-programs. They can reach their maximum acceptable length
immediately, i.e. at the very start of the evolutionary process, or they can increase 
their size gradually, step by step. The process of growth of the chromosomes-data
is remained without any control. As before, the chromosomes-data do not grow so 
fast as the chromosomes-programs and the problem of their uncontrolled growth 
rather does not exist. 
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Scheme 3, analogically as Scheme 2, uses the following genetic algorithms: 
Canonical GA or Steady State GA to process a population of chromosomes-programs, 
Eugenic Algorithm or Steady State GA to process populations of chromosomes-
operations and chromosomes-jump-operations and Steady State GA to process 
a population of chromosomes-data. 

3.6.4. Scheme 4

Scheme 4 (single-procedure AEP encoding scheme) is an adaptation of CCGA 
(Cooperative Coevolutionary GA) [21, 22, 23, 24]. To create AEP, scheme 4 combines 
operations and data from various populations. Each population of chromosomes-
operations has a number assigned determining a position of the operation from 
the population in AEP. In this approach, the number of operations corresponds to 
the number of populations including chromosomes-operations. Each population 
delegates exactly one representative to each AEP. At the beginning, AEPs have only 
one operation and a sequence of data. Both operation and data come from two 
different populations. Further populations including chromosomes-operations are
successively added if generated AEPs cannot accomplish progress in performance 
over a number of co-evolutionary cycles. The populations with chromosomes-
operations and chromosomes-data can be also replaced by newly created populations. 
Such situation takes place when contribution of a population to AEPs is considerably 
less than contribution of the remaining populations. In the experiments reported 
in [25], the contribution of a population was measured as an average fitness of
operations or data contained in that population. 

The approach described above makes it possible to generate many different
AEPs — there are many various combinations of operations and data from different
populations. In order to restrict the number of possible AEPs generated in each 
co-evolutionary cycle, the following solution is used [21]. In each cycle, the best 
five individuals from each population are selected. These individuals are used in
the next cycle to create AEPs. Each AEP is created based on the individual being 
currently evaluated and based on the individuals belonging to the selected set of the 
best individuals from the previous cycle. Five AEPs are generated for each individual 
evaluated. One AEP is produced based on the best individuals from the previous 
cycle. The remaining four AEPs are constructed based on random individuals from
the set of the best individuals from the previous cycle. Because each individual 
participates in five different AEPs, each of them receives either fitness of the best
AEP in which has taken part or average fitness of its all five contributions.

The approach presented above determines the process of creating AEP. It does
not say anything about initial size of NDM. Thus, we do not know whether AEP
should operate on NDM consisting of nine rows and twelve columns or whether 
it should modify NDM containing, for example, four rows and seven columns. 
AE solves this problem in the following way. Initially, each AEP operates on NDM 
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containing minimal acceptable number of rows and columns (e.g. the number of 
rows equals the number of input and output neurons while the number of columns 
equals the number of rows plus extra three columns including additional information 
about neurons). Then, if AEPs created cannot generate any satisfying solution over
some fixed number of co-evolutionary cycles, NDM is expanded by a single row
and column corresponding to the next neuron.

Scheme 4 uses the following GAs: Canonical GA or Eugenic Algorithm to 
process populations with chromosomes-operations and Canonical GA or Steady 
State GA to process population with chromosomes-data. 

3.6.5. Scheme 5

Scheme 5 [26] is the first scheme out of all the schemes presented so far which
makes it possible to create multi-procedure AEPs. It uses two types of chromosomes, 
i.e. chromosomes-programs and chromosomes-procedures to create AEP. The first
type of chromosomes includes the information necessary to build AEP and NDM 
whereas the second type contains the information needed to construct a procedure. 
Hence, every chromosome-program incorporates the following information: the 
size of NDM (and consequently the size of ANN), pointers to chromosomes-
procedures and new values for the registers. The registers are updated at the very
start of each procedure. In turn, each chromosome-procedure is a sequence of 
operations with their parameters and a sequence of data (Fig. 22). Additionally, 
the chromosome-procedure has to include a field indicating where is a borderline
between data and operations.

Fig. 21. Illustration of Scheme 4
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The way of rewarding individuals from populations of chromosome-programs
and chromosomes-procedures is analogical to the method used in Scheme 2 
and Scheme 3. That is, chromosomes-programs receive fitness of corresponding
AEPs whereas fitness of chromosomes-procedures is averaged over the best five
contributions of each of them.

To create varied length AEPs, chromosomes-programs and chromosomes-
procedures used in Scheme 5 are allowed to change their length. To prevent 
infinite growth of both types of chromosomes, the following solution is applied.
Chromosomes-programs are penalized if AEPs created based on them include too 
many operations and data whereas chromosomes-procedures are punished if as 
a whole they include too many genes. The limit for the number of operations and
data is fixed permanently at the very start of the evolutionary process while the
limit for the number of genes in chromosomes-procedures increases gradually. 
Thus, chromosomes-programs can reach their maximum size immediately whereas
chromosomes-procedures only grow if the evolution cannot produce any effective
AEP within some number of co-evolutionary cycles. Both chromosomes-programs 
and chromosomes-procedures are also punished if they are incomplete, i.e. if they 
do not represent complete AEPs or procedures. 

Scheme 5 uses the following GAs: Canonical GA or Steady State GA to process 
the population with chromosomes-programs and Steady State GA to process the 
population including chromosomes-procedures.

Fig. 22. Illustration of Scheme 5
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3.6.6. Scheme 6

Another AEP encoding scheme, which can be used to create multi-procedure 
AEPs, is Scheme 6 (Fig. 23) [26]. It assumes that the whole information necessary 
to construct AEP is included in four sorts of chromosomes, i.e. in chromosomes-
programs, chromosomes-procedures, chromosomes-operations and in chromosomes-
data. Chromosomes-programs have the same structure as previously. In turn, 
chromosomes-procedures are cut into three separated parts. This time, they solely
include pointers to chromosomes-operations and chromosome-data. Chromosomes-
data are a sequence of data while chromosomes-operations are encoded operations. 
To evaluate individuals from all populations specified in Fig. 23, the same procedure
is applied as in the previous case. Chromosomes-programs receive fitness of
corresponding AEPs while individuals from the remaining populations are evaluated 
based on fitnesses of the best five AEPs to which contributed each of them.

Fig. 23. Illustration of Scheme 6

In Scheme 6, we deal with three types of variable length chromosomes, 
i.e. chromosomes-programs, chromosomes-procedures and chromosomes-data and 
with one type of chromosomes which do not alter length over time, i.e. chromosomes-
operations. To avoid unlimited growth of chromosomes, Scheme 6 uses the same 
solution as Scheme 5, i.e. chromosomes-programs are penalized if AEPs created based 
on them include too many operations and data whereas chromosomes-procedures 
are punished if they include too many pointers to operations. Chromosomes-data are 
unlimited in their growth. They do not grow so fast as the remaining chromosomes
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and for that reason the problem of their fast growth practically does not exist. 
Scheme 6 like Scheme 5 assumes that chromosomes-programs can reach their 
maximum length immediately after staring the evolution. Chromosomes-procedures
unlike chromosomes-programs grow gradually, starting from individuals including 
not large number of pointers to operations and data.

Scheme 6 uses the following GAs: Canonical GA or Steady State GA to 
process the population with chromosomes-programs, Steady State GA to process 
populations including chromosomes-procedures and chromosomes-data and 
Eugenic Algorithm or Steady State GA to process the population containing 
chromosomes-operations.

4. Examples of use of AE 

This section briefly presents two examples of use of AE. The first example
involves the situation in which AE and GAs are used to find a matrix being a solution
of some optimization problem. The second case concerns the situation in which
ANNs created by means of AE are used to control artificial agents-predators whose
common goal is to capture a fast moving agent-prey.

4.1. Using AE in optimization problem 

In [25], preliminary experiments are reported in which AE is used to solve 
several optimization problems. In the experiments mentioned, AE is not used to 
create ANNs but to create matrices being the solution to different optimization
problems. During the experiments, the potential of AE to produce optimal matrices 
was tested. Further, two example objective functions used in the experiments and 
optimal matrices for these functions are presented. In both cases, the task of AEPs 
was to find the matrix that would maximize the function optimized. The global
maximum for both test functions presented below is zero. 
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The experiments showed that AE can be successfully used to solve optimization
problems in which solution can be presented in the form of a matrix. Regardless of 
the problem being optimized, most AEPs generated during the evolution created 
optimal matrices or matrices very close to the optimal. Below, example AEPs created 
during the experiments and matrices produced by them are presented. 
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4.2. Using AE in predator-prey problem

The next problem in which AE was tested is a simple version of the predator-
prey problem [25, 27, 28]. This time, the task of AEPs was to generate ANNs
controlling a set of cooperating predators whose common goal was to capture a fast 
moving prey behaving according to a simple deterministic strategy. The predators
and the prey used in the experiments lived in a common environment. We used 
20 × 20 square without obstacles but with two barriers located on the left and on
the right side of the square to represent the environment. Both barriers caused the 
predators as well as the prey to move right or left only to the point at which they
reached one of the barriers. Moving further in the barrier direction did not cause 
any effect. In order to ensure infinite space for the predators and the prey and
for their struggles, we made the environment open at the bottom and at the top. 
This means that every attempt of movement beyond upper or lower border of the
square caused the object making such an attempt to move to the opposite side of 
the environment. As a result, the simple strategy of predators consisting in chasing 
the prey did not work. In such a situation, the prey in order to evade predators, 
could simply escape up or down.

Fig. 24. (a) AEP being the solution to f1; (b) encoded AEP presented in point (a); (c) AEP being 
the solution to f2; (d) the matrix generated by AEP presented in point (c) (operations used in AEPs 

presented above are described at the end of the paper)
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The tests showed that AE is able to create simple ANNs. Most of ANNs created
in the experiments successfully controlled the predators in all tested scenarios 
(tested scenarios differed in initial positions of the predators and the prey, in the
speed of the prey and in the strategy used by the prey). 

Fig. 25. Artificial world in which task of predators was to capture prey

Fig. 26. (a) Example of AEP which created successful recurrent dynamical ANN, (b) encoded form of 
AEP presented in point (a), (c) NDM (see Fig. 5) generated by AEP presented in point (a) and (b)
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Summary

The paper presents a new ANN encoding scheme called Assembler Encoding.
The encoding scheme proposed represents ANN in a very compact form, what
allows applying GAs to create effective ANNs. Like cellular encoding and edge
encoding, AE encodes ANN in the form of a program. This permits building very
complex and large neural architectures by means of relatively small chromosomes. 
Unlike cellular and edge encoding program, which is represented as a tree, AEP is 
a linearly ordered set of operations and data. Another difference between cellular,
edge and assembler encodings is an object, which is altered by the program. Cellular 
and edge encodings operate directly on a prototype of ANN. AE creates a network 
indirectly, changing NDM that represents ANN.

In the paper, different variants of AE are presented. The variants mentioned
differ in the operations used in AEPs, in the method used to create modular ANNs
and in the scheme used to encode AEP into genotype. AEPs can use two types of 
the operations, i.e. four-parameter operations and three-parameter operations. 
The four-parameter operations are encoded in the form of binary strings and they

Fig. 27. Example of behavior of predators and prey in some example scenario used in the experiments 
(neuro-controller: recurrent dynamical ANN whose NDM is presented in Fig. 25(c)). Circles indicate 
initial positions of predators and prey (black circle-prey, circle with vertical stripes-predators), round 
symbols with diagonal lines denote final positions, arrowed lines indicate directions of movement
(solid line-prey, dashed or dotted lines-predators) whereas black boxes determine time of occurrence 

of individuals in a given place
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usually change a block of neighboring elements of NDM. The three-parameter
operations are encoded as strings including zeros, ones and the so-called don’t 
care symbol denoted as “#”. In contrast to the four-parameter operations, a single 
three-parameter operation can be used to change remote fragments of NDM. 

To create modular ANNs, AE uses three methods. Using the same data by 
various operations is the first method. The remaining two methods, i.e. jumps and
procedures, repeatedly use the same operations in different fragments of NDM.

In order to use GAs and AE to generate ANNs, it is necessary to encode AEP 
in the form of a genotype. The paper presents six schemes that can be used for that
purpose. Four schemes are single procedure schemes. The remaining two schemes
make it possible to create multi-procedure AEPs. The simples scheme copies all
information necessary to create AEP into a single chromosome. The remaining
schemes are co-evolutionary schemes in which AEPs evolve in more than a single 
population. 

Received April 7 2008; revised May 2008.
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APPENDIX 1  
— List of operations presented in figures no. 23 and 25

CHG  Update of element. Both new value and address of element are located in 
parameters of operation.

CHGR1  Update of certain number of elements in row. Index of row, index of first
element in row that will be changed, number of changed elements and new 
value for row’s elements, the same for all elements, are located in parameters 
of operation.

CHGR2  Update of certain number of elements in row. New value of every element is 
sum of operation’s parameter and current value of this element. The second
parameter of operation is index of row. Third and fourth parameter of ope-
ration determine respectively number of changed elements and index of the 
first element in row that will be changed.

CHGR4  An update of certain number of elements in row. New value of every element 
is a sum of current value of this element and respective value from memory 
of AEP. An index of the row, an index of the first element in the row that will
be changed, the number of changed elements and a pointer to data, where 
ingredients of individual sums are memorized, are located in parameters of 
operation.

CHGM0  Change of block of elements. Elements are updated in columns, in turn, one 
after another, starting from element pointed by parameters of operation. The
number of changed elements and place in the memory where new values for 
elements are located are determined by parameters of operation.

 CHGM2 like CHGM0 but new value of each element is a sum of its current value and 
value from memory part of a program. The number of changed elements and
place in the memory where arguments of individual sums are located are 
determined by parameters of operation.

JMP  Jump operation. The number of jumps, a pointer to next operation and new
values of registers are located in parameters of jump operation. 

CHG_MEMORY    Change of set of elements of NDM indicated by parameters of operation. 
Values of updated elements are located in the memory. 

T. PRACZYK

Kodowanie Asemblerowe — nowa metoda kodowania sieci neuronowych
Streszczenie. Głównym celem artykułu jest przedstawienie Kodowania Asemblerowego czyli nowej 
metody kodowania sztucznych sieci neuronowych. W Kodowaniu Asemblerowym sieć neuronowa 
jest zakodowana w postaci programu (AEP — Assembler Encoding Program) o liniowej organizacji 
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i o strukturze podobnej do struktury prostego programu asemblerowego. Zadaniem AEP jest stworze-
nie tzw. Macierzy Definicji Sieci (NDM — Network Definition Matrix) zawierającej całą informację
potrzebną do stworzenia sieci. Tworzenie AEP i w konsekwencji sieci neuronowych odbywa się 
z wykorzystaniem technik ewolucyjnych. 
Słowa kluczowe: ewolucyjne sieci neuronowe, kodowanie
Symbole UKD: 004.032.26




