PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of anticipated performance of 650-nm GaInP/AlGaInP quantum-well GaAs-based VCSELs at elevated temperatures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
The Fifth International Conference on Solid State Crystals (ICSS-5 ) ; (5 ; 20-24.05.2007 ; Zakopane-Kościelisko, Poland)
Języki publikacji
EN
Abstrakty
EN
The possibility of application of the 650-nm oxide-confined GaInP/AlGaInP quantum-well vertical cavity surface-emitting diode lasers (VCSELs) at elevated temperatures as sources of the carrier 650-nm wave in the fibre optical communication using POFs has been investigated with the aid of the comprehensive self-consistent model. An increase in the VCSEL threshold current at higher temperatures has been found to be mostly associated with both the carrier leakage from the valley of the Ga₀.₄₃In₀.₅₇P quantum-well material to the X-valley of the (Al₀.₆₇Ga₀.₃₃)₀.₅₂In₀.₄₈P barriers and the band-to-band absorption within the Ga₀.₅₂In₀.₄₈P layer of the band-gap comparable with the energy of emitted radiation. Nevertheless, the AlGaInP VCSELs exhibit encouraging thermal behaviour with the characteristic temperature T₀ equal to as much as 134 K for the active-region temperatures up to 357 K. For the 5-µm devices, the maximal achievable output has been determined to decrease from a quite high value of 1.0 mW for 293 K to 0.6 mW for 320 K and to still high 0.33 mW for 340 K. However, an efficient operation of the above VCSEL at elevated temperatures requires still some structure modifications leading to a reduction of both the above effects, the electron leakage from the valley and the band-to-band absorption within GaInP layers.
Twórcy
autor
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Polska
Bibliografia
  • 1. H.P.A. van den Boom, W. Li, P.K. van Bennekom, I. Tafur Monroy, and G.D. Khoe, "High-capacity transmission over polymer optical fiber", IEEE J. Selected Topics Quantum Electron. 7, 461-470 (2001).
  • 2. K. Ohdoko, T. Ishigure, and Y. Koike, "Propagating mode analysis and design of waveguide parameters of GI POF for very short-reach network use", IEEE Photon. Techn. Lett. 17, 79-81 (2005).
  • 3. T. Kaino, "Polymer optical fibers", in Polymers for Lightwave and Integrated Optics: Technology and Applications, pp. 1-38, edited by L.A. Hornak, Marcell Dekker, New York, 1992.
  • 4. P. Polishuk and O. Graydon, "Car manufacturers drive sales of polymer fibre", Opto&Laser Europe 9, 17-18 (2004).
  • 5. T. Freeman, "POF eyes high-speed connections", FibreSystems Europe/Ligthwave Europe 1, 11-12 (2004).
  • 6. T. Freeman, "POF processing keeps losses low", FibreSystems Europe/Ligthwave Europe 2, 25-26 (2005).
  • 7. T. Freeman, "Plastic optical fibre tackles automotive requirements", FibreSystems Europe/Ligthwave Europe 1, 14-16 (2004).
  • 8. A. Knigge, M. Zorn, J. Sebastian, K. Vogel, H. Wenzel, M. Weyers, and G. Tränkle, "High-efficiency AlGaInP/AlGaAs vertical-cavity surface-emitting lasers with 650 nm wavelength", IEE Proc. Optoelectron. 150, 110-114 (2003).
  • 9. R.P. Sarzała and W. Nakwaski, "Optimisation of the 1.3-m GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation (invited)", J. Phys.: Cond. Matter 16, S3121-S3140 (2004).
  • 10. W.W. Chow, K.D. Choquette, M.H. Crawford, K.L. Lear, and G.R. Hadley, "Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron. 33, 1810-1824 (1997).
  • 11. A.T. Meney, A.D. Prins, A.F. Phillips, J.L. Sly, E.P. O'Reilly, D.J. Dunstan, A.R. Adams, and A. Valster, "Determination of the band structure of disordered AlGaInP and its influence on visible-laser characteristics", IEEE J. Select. Topics Quantum Electron. 1, 697-706 (1995).
  • 12. G. Knowles, S.J. Sweeney, and T. Sale, "Influence of leakage and gain-cavity alignment on the performance of the Al(GaInP) visible vertical-cavity surface emitting lasers", IEE Proc. Optoelectron. 148, 55-59 (2001).
  • 13. D.P. Bour, D.W. Treat, R.L. Thornton, R.S. Geels, and D.F. Welch, "Drift leakage current in AlGaInP quantum-well lasers", IEEE J. Quantum Electron. 29, 1337-1343 (1993).
  • 14. M.R. Brown, R.J. Cobley, K.S. Teng, P. Rees, S.P. Wilks, A. Sobiesierski, P.M. Smowton, and P. Blood, "Modeling multiple quantum barrier effects and reduced electron leakage in red-emitting laser diodes", J. Appl. Phys. 100, 084509 (2006).
  • 15. G. Knowles, S.J. Sweeney, T.E. Sale, and A.R. Adams, "Self-heating effects in red (665 nm) VCSELs", IEE Proc. Optoelectron. 148, 256-260 (2001).
  • 16. W. Nakwaski and M. Osiński, "Thermal analysis of GaAs/AlGaAs etched-well surface-emitting double-heterostructure lasers with dielectric mirrors", IEEE J. Quantum Electron. 29, 1981-1995 (1993).
  • 17. P. Lawaetz, "Valence-band parameters in cubic semiconductors", Phys. Rev. B4, 3460-3467 (1971).
  • 18. C. Hermann and C. Weisbuch, "kp perturbation theory in III-V compounds and alloys: a reexamination", Phys. Rev. B15, 823-833 (1977).
  • 19. T. Kato, T. Matsumoto, and T. Ishida, "Electrical properties of Zn-doped In1-xGaxP", Jpn. J. Appl. Phys. 19, 2367-2375 (1980).
  • 20. M. Ikeda and K. Kaneko, "Selenium and zinc doping in Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by metalorganic chemical vapour deposition", J. Appl. Phys. 66, 5285-5289 (1989).
  • 21. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, vol. 17a, edited by O. Madelung, Springer-Verlag, New York, 1996.
  • 22. R. Kúdela, J. Novák, and M. Kucera, "Zn-doped InGaP grown by the LP-MOCVD", J. Electron. Materials 26, 7-10 (1997).
  • 23. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys", J. Appl. Phys. 89, 5815-5875 (2001).
  • 24. M. Yin, P.M. Smowton, P. Blood, B. McAuley, and C.C. Button, "S-shaped negative differential resistance in 650 nm quantum well laser diodes", Solid-State Electron. 45, 447-452 (2001).
  • 25. Z.Z. Sun, S.F. Yoon, and W.K. Lokke, "Electrical properties of silicon and beryllium-doped GaInP and (AlGa)InP grown by solid source molecular beam epitaxy", J. Cryst. Growth 235, 8-14 (2002).
  • 26. J.R. Dong, J.H. Teng, S.J. Chua, B.C. Foo, Y.J. Wang, H.R. Yuan, and S. Yuan, "650-nm AlGaInP multiple-quantumwell lasers grown by metalorganic chemical vapour deposition using tertiarybutylphosphine", Appl. Phys. Lett. 83, 596-598 (2003).
  • 27. M.J. Weber, Handbook of Optical Materials, CRC Press, Boston, 2003.
  • 28. http://www.matter-antimatter.com
  • 29. S. Adachi, "GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications", J. Appl. Phys. 58, R1-R29 (1985).
  • 30. A. Amith, I. Kudman, and E.F. Steigmeier, "Electron and phonon scattering in GaAs at high temperatures", Phys. Rev. 138, A1270-A1276 (1965).
  • 31. W. Nakwaski, "Thermal conductivity of binary, ternary and quaternary III-V compounds", J. Appl. Phys. 64, 159-166 (1988).
  • 32. M. Guden and J. Piprek, "Material parameters of III-V semiconductors for multiplayer mirrors at 1.55 µm wavelength", Modelling and Simulation in Materials Science and Engineering 4, 349-357 (1996).
  • 33. M. Le Du, D. Massoubre, J.C. Harmand, and J.L. Oudar, "Thermal conductance of laterally-wet-oxidised GaAs/AlxOy Bragg reflectors", Electron. Lett. 42, 1060-1062 (2006).
  • 34. M. Osiński and W. Nakwaski, "Three-dimensional simulation of vertical-cavity surface-emitting lasers", Chapter 5, in Vertical Cavity Surface Emitting Laser Devices, Springer Series in Photonics, Vol. 6, pp. 135-192, edited by H. Li and K. Iga, Springer-Verlag, Berlin/Heidelberg, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0021-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.