PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure optimisation of short-wavelength ridge-wavequide InGaN/GaN diode lasers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
The Fifth International Conference on Solid State Crystals (ICSS-5 ) ; (5 ; 20-24.05.2007 ; Zakopane-Kościelisko, Poland)
Języki publikacji
EN
Abstrakty
EN
Room-temperature (RT) continuous-wave (CW) operation of the 405-nm ridge-waveguide (RW) InGaN/GaN quantum-well diode lasers equipped with the n-type GaN substrate and two contacts on both sides of the structure has been investigated with the aid of the comprehensive self-consistent simulation model. As expected, the mounting configuration (p-side up or down) has been found to have a crucial impact on the diode laser performance. For the RT CW threshold operation of the otherwise identical diode laser, the p-side up RW laser exhibits as high as nearly 68°C maximal active-region temperature increase whereas an analogous increase for the p-side down laser was equal to only 24°C. Our simulation reveals that the lowest room-temperature lasing threshold may be expected for relatively narrow and deep ridges. For the structure under consideration, the lowest threshold current density of 5.75 kA/cm² has been determined for the 2.2-µm ridge width and the 400-nm etching depth. Then, the active-region temperature increase was as low as only 24 K over RT. For wider 5-µm ridge, this increase is twice higher. An impact of etching depth is more essential for narrower ridges. Quite high values (between 120 and 140 K) of the characteristic parameter T₀ convince very good thermal properties of the above laser.
Twórcy
autor
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
Bibliografia
  • 1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwassa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaNbased multi-quantum-well-structure laser diode", Jpn. J. Appl. Phys. 35, L74-L76 (1996).
  • 2. A. Tomczyk, R.P. Sarzała, T. Czyszanowski, M. Wasiak, and W. Nakwaski, "Fully self-consistent three-dimensional model of edge-emitting nitride diode lasers", Opto-Electron. Rev. 11, 65-75 (2003).
  • 3. M. Kauer, S.E. Hooper, V. Bousquet, K. Johnson, C. Zellweger, J.M. Barnes, J. Windle, T.M. Smeeton, and J. Hefferman, "Continuous-wave operation of InGaN multiple quantum well laser diodes grown by molecular beam epitaxy", Electron. Lett. 41, 739-740 (2005).
  • 4. T. Czyszanowski, "Method of effective index and method for lines for the analysis of optical phenomena in the edgeemitting (in-plane) diode lasers", Sci. Bull. Tech. Univ. Łódź, Physics 21, 31-38 (2001).
  • 5. G.L. Tan, N. Bewtra, K. Lee, and J.M. Xu, "A two-dimensional nonisothermal finite element simulation of laser diodes", IEEE J. Quantum Electron. 29, 822-835 (1993).
  • 6. R.P. Sarzała and W. Nakwaski, "Optimisation of the 1.3-µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation (invited)", J. Phys.: Cond. Matter 16, S3121-S3140 (2004).
  • 7. W. Nakwaski and M. Osiński, Thermal Properties of Vertical-Cavity Surface-Emitting Lasers, Chapter III, pp. 165-262, in Progress in Optics, edited by E. Wolf, North-Holland/Elsevier Science B.V., Amsterdam, 1998.
  • 8. M. Wasiak, "Optical gain in lasers with quantum-well active regions", MSc Dissertation, Institute of Physics, Technical University of Łódź, Łódź, 1999. (in Polish)
  • 9. R.P. Sarzała, "Designing strategy to enhance mode selectivity of higher-output oxide-confined vertical-cavity surfaceemitting lasers", Appl. Phys. A: Materials Science & Processing 81, 275-283 (2005).
  • 10. W. Nakwaski and M. Osiński, "Thermal analysis of GaAs/AlGaAs etched well surface emitting double heterostructure lasers with dielectric mirrors", IEEE J. Quantum Electron. 29, 1981-1995 (1993).
  • 11. M. Kuramato, C. Sasaoka, Y. Hisanaga, A. Kimura, A.A. Yamaguchi, H. Sunakawa, N. Kuroda, M. Nido, A. Usui, and M. Mizuta, "Room-temperature continuous-wave operation of InGaN multi-quantum-well laser diodes grown on an n-GaN substrate with a backside n-contact", Jpn. J. Appl. Phys. 35, L184-L186 (1999).
  • 12. W. Götz, N.M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, "Activation energies of Si donors in GaN", Appl. Phys. Lett. 68, 3144-3146 (1996).
  • 13. P. Mackowiak and W. Nakwaski, "Designing guidelines for possible continuous-wave-operating nitride vertical-cavity surface-emitting lasers", J. Phys. D: Appl. Phys. 33, 642–653 (2000).
  • 14. H.M. Chung, Y.C. Pau, W.C. Chung, N.C. Chen, C.C. Tsai, C.I. Chiang, C.H. Liu, W. Chang, M.C. Lee, W.H. Chen, and W.K. Chen, "Long-term photocapacitance decay behaviour in undoped GaN", Proc. Intern. Workshop on Nitride Semiconductors, Nagoya, IPAP Conf. Series 1, 463-466 (2000).
  • 15. J.K. Sheu, G.C. Chi, and M.J. Jou, "Improved electrical property of InGaN/GaN light-emitting diodes by using Mg-doped AlGaN/GaN superlattices", Proc. Int. Workshop on Nitride Semiconductors, Nagoya, IPAP Conf. Series 1, 856-859 (2000).
  • 16. A. Dmitriev and A. Oruzheinikov, "The rate of radiative recombination in nitride semiconductors and alloys", J. Appl. Phys. 86, 3241-3245 (1999).
  • 17. V.A. Smagley, P.G. Eliseev, and M. Osiński, "Comparison of models for optical gain in gallium nitride", Proc. SPIE 2994, 129-140 (1997).
  • 18. D.I. Florescu, V.A. Asnin, L.G. Mourokh, F.H. Pollak, R.J. Molnar, and C.E.C. Wood, "High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapour phase epitaxy grown n-GaN/sapphire(0001): Doping dependence", J. Appl. Phys. 88, 3295-3300 (2000).
  • 19. G.A. Slack, R.A. Tanzil, R.O. Pohl, and J.W. Vandersande, "The intrinsic thermal conductivity of AlN", J. Phys. Chem. Solids 48, 641-647 (1987).
  • 20. S. Krukowski, A. Witek, J. Adamczyk, J. Jun, M. Bockowski, I. Gregory, B. Lucznik, G. Nowak, M. Wróblewski, A. Presz, S. Gierlotka, S. Stelmach, B. Palosz, S. Porowski, and P. Zinn, "Thermal properties of indium nitride", J. Phys. Chem. Solids 59, 289-295 (1998).
  • 21. W. Nakwaski, "Thermal conductivity of binary, ternary, and quaternary III-V compounds", J. Appl. Phys. 64, 159-166 (1988).
  • 22. J. Piprek, T. Peng, G. Qui, and J.O. Olowolafe, "Energy gap bowing and refractive index spectrum of AlInN and AlGaInN", IEEE Int. Symp. on Compound Semiconductors, 227-230 (1997).
  • 23. Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shu, J. Wiley & Sons, New York, 2001.
  • 24. M. Leszczynski, H. Teisseyre, T. Susuki, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J.M. Baranowski, C.T. Foxon, and T.S. Cheng, "Lattice parameters of gallium nitride", Appl. Phys. Lett. 69, 73-75 (1996).
  • 25. I. Vurgaftmann, J.R. Meyer, and L.R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys", J. Appl. Phys. 89, 5815-5875 (2001).
  • 26. S.K. Pugh, D.J. Dugdale, S. Brand, and R.A. Abram, "Electronic structure calculations on nitride semiconductors", Semicond. Sci. Technol. 14, 23-31 (1999).
  • 27. L.E. Ramos, L.K. Teles, L.M. R. Scolfaro, J.J.P. Castineira, A.L. Rosa, and J.R. Leite, "Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds", Phys. Rev. B63, 165210-165220 (2001).
  • 28. M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K.F. Brennan, "Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN", J. Appl. Phys. 88, 6467-6475 (2000).
  • 29. Y.C. Yeo, T.C. Chong, and M.F. Li, "Electronic band structures and effective-mass parameters of wurtzite GaN and InN", J. Appl. Phys. 83, 1429-1436 (1998).
  • 30. M. Suzuki, T. Usnoyama, and A. Yanase, "First-principles calculations of effective-mass parameters of AlN and GaN", Phys. Rev. B52, 8132-8139 (1995).
  • 31. M.S. Minsky, S.B. Fleischer, A.C. Abare, J.E. Bowers, E.L. Hu, S. Keller, and S.P. Denbaars, "Characterization of highquality InGaN/GaN multiquantum wells with time-resolved photoluminescence", Appl. Phys. Lett. 72, 1066-1068 (1998).
  • 32. J. Piprek and S. Nakamura, "Physics of high-power InGaN/GaN lasers", IEE Proc.: Optoelectron. 149, 145-151 (2002).
  • 33. C.Y. Lai, T.M. Hsu, W.H. Chang, K.U. Tseng, C.M. Lee, C.C. Chuo, and J.Y. Chyi, "Direct measurement of piezoelectric field in InGaN/GaN multiple quantum wells by electrotransmission spectroscopy", J. Appl. Phys. 91, 531-533 (2002).
  • 34. A. Kunold and P. Pereyra, "Photoluminescence transitions in semiconductor superlattices. Theoretical calculations for InGaN blue laser device", J. Appl. Phys. 93, 5018-5024 (2003).
  • 35. J. Piprek and T. Peng, "Refractive index of AlGaInN", Electron. Lett. 32, 2285-2286 (1996).
  • 36. G.M. Laws, E.C. Larkins, I. Harrison, C. Molloy, and D. Somerford, "Improved refractive index formulas for the AlxGa1-xN and InyGa1-yN alloys", J. Appl. Phys. 89, 1108-115 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0021-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.