PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Principles of VCSEL designing

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
The Fifth International Conference on Solid State Crystals (ICSS-5 ) ; (5 ; 20-24.05.2007 ; Zakopane-Kościelisko, Poland)
Języki publikacji
EN
Abstrakty
EN
Comprehensive computer simulations are currently the most efficient and cheap methods in designing and optimisation of semiconductor device structures. Seemingly they should be as exact as possible, but in practice it is well known that the most exact approaches are also the most involved and the most time-consuming ones and need powerful computers. In some cases, cheaper somewhat simplified modelling simulations are sufficiently accurate. Therefore, an appropriate modelling approach should be chosen taking into account a compromise between our needs and our possibilities. Modelling of operation and designing of structures of vertical-cavity surface-emitting diode lasers (VCSELs) requires appropriate mathematical description of physical processes crucial for devices operation, i.e., various optical, electrical, thermal, recombination and sometimes also mechanical phenomena taking place within their volumes. Equally important are mutual interactions between above individual processes, usually strongly non-linear and creating a real network of various inter-relations. Chain is as strong as its weakest link. Analogously, model is as exact as its less exact part. Therefore it is useless to improve exactness of its more accurate parts and not to care about less exact ones. All model parts should exhibit similar accuracy. In any individual case, a reasonable compromise should be reached between high modelling fidelity and its practical convenience depending on a main modelling goal, importance and urgency of expected results, available equipment and also financial possibilities. In the present paper, some simplifications used in VCSEL modelling are discussed and their impact on exactness of VCSEL designing is analysed.
Twórcy
autor
  • Instytute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland, nakwaski@p.lodz.pl
Bibliografia
  • 1. M. Osiński and W. Nakwaski, "Three-dimensional simulation of vertical-cavity surface-emitting lasers", Chapter 5 in Vertical Cavity Surface Emitting Laser Devices, Springer Series in Photonics, Vol. 6, pp. 135-192, edited by H. Li and K. Iga, Springer-Verlag, Berlin/Heidelberg, 2003.
  • 2. P. Bienstman, R. Baets, J. Vukovic, A. Larsson, M.J. Noble, M. Brunner, K. Gulden, P. Debernardini, L. Fratta, G.P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S.A. Riyopoulos, J.F. P. Seurin, and S.L. Chuang, "Comparison of optical VCSEL models on the simulation of oxide-confined devices", IEEE J. Quantum Electron. 37, 1618-1631 (2001).
  • 3. T. Czyszanowski and W. Nakwaski, "Validity of scalar approaches to radiation modes of the GaAs-based 1.3-µm diode lasers designed for the optical-fibre communication", Opt. Quantum Electron. 38, 349-360 (2006).
  • 4. T. Czyszanowski and W. Nakwaski, "Comparison of exactness of scalar and vectorial optical methods used to model a VCSEL operation", IEEE J. Quantum Electronics 41, 399-406 (2007).
  • 5. R.P. Sarzała, "Designing strategy to enhance mode selectivity of higher-output oxide-confined vertical-cavity surfaceemitting lasers", Appl. Phys. A81, 275-283 (2005).
  • 6. T. Czyszanowski, M. Dems, and K. Panajotov, "Impact of the hole depth on the modal behaviour of long wavelength photonic crystal VCSELs", J. Phys. D: Appl. Phys. 40, 2732-2735 (2007).
  • 7. M. Dems, T. Czyszanowski, and K. Panajotov, "Plane-wave and cylindrical-wave admittance method for simulation of classical and photonic-crystal-based VCSELs", Proc. SPIE 6182, 618219 (2006).
  • 8. T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, "Optimal radii of photonic crystal holes within DBR mirrors in long wavelength VCSEL", Optics Express 15, 1301-1306 (2007).
  • 9. J. Piprek, Semiconductor Optoelectronic Devices. Introduction to Physics and Simulations, Academic Press, Amsterdam, 2003.
  • 10. R.P. Sarzała and W. Nakwaski, "Optimisation of the 1.3-µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation (invited paper)", J. Phys.: Cond. Matter 16, S3121-S3140 (2004).
  • 11. M. Osiński and W. Nakwaski, "Effective thermal conductivity analysis of 1.55-µm InGaAsP/InP vertical-cavity topsurface-emitting microlaser", Electron. Lett. 29, 1015-1016 (1993).
  • 12. W. Nakwaski, "Thermal conductivity of binary, ternary and quaternary III-V compounds", J. Appl. Phys. 64, 159-166 (1988).
  • 13. G.R. Wachutka, "Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modelling", IEEE Trans. Comput. Aided Design 9, 1141-1149 (1990).
  • 14. W. Nakwaski, "Spontaneous radiation transfer in heterojunction laser diodes", Sov. J. Quantum Electron. 9, 1544-1546 (1979).
  • 15. P.G. Eliseev, private information.
  • 16. W.Ch. Ng, Y. Liu, and K. Hess, "Lattice temperature model and temperature effects in oxide-confined VCSELs", J. Comput. Electronics 3, 103-116 (2004).
  • 17. G. Chen and C.L. Tien, "Thermal conductivities of quantum well structures", J. Thermophysics and Heat Transfer 7, 311-318 (1993).
  • 18. G. Chen, "Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures", Trans. ASME 119, 220-229 (1997).
  • 19. G. Chen, "Ballistic-diffusive equations for transient heat conduction from nano to macroscales", Trans. ASME 124, 320-328 (2002).
  • 20. R.P. Sarzała, "Two-dimensional thermal analysis of oxideisolated-stripe diode lasers with application of the finiteelement method", Intern. J. Optoelectron. 8, 105-108 (1993).
  • 21. E.T. Swartz and R.O. Pohl, "Thermal boundary resistance", Rev. Modern Phys. 61, 605-668 (1989).
  • 22. J.M. Ziman, Electrons and Phonons, Chapters 1, 8, and 11, Clarendon, Oxford, 1960.
  • 23. W.S. Capinski and H.J. Marris, "Thermal conductivity of GaAs/AlAs superlattices", Physica B219&220, 699-701 (1996).
  • 24. J. Piprek, T Tröger, B. Schröter, J. Kolodzey, and C.S. Ih, "Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors", IEEE Photon. Techn. Lett. 10, 81-83 (1998).
  • 25. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, and D.S. Katzer, "Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pumpand-probe technique", Phys. Rev. B59, 8105-8113 (1999).
  • 26. L.H. Liang and B. Li, "Size-dependent thermal conductivity of nanoscale semiconducting systems", Phys. Rev. B73, 153303 (2006).
  • 27. S.W. Koch, J. Hader, A. Thränhardt, and J.V. Moloney, "Gain and absorption: Many-body effects", Chapter 1 in Optoelectronic Devices. Advanced Simulation and Analysis, pp. 1-26, edited by J. Piprek, Springer, 2005.
  • 28. J. Hader, J.V. Moloney, A. Thränhardt, and S.W. Koch, "Interband transitions in InGaN quantum wells", Chapter 7 in Nitride Semiconductor Devices. Principles and Simulation, pp. 145-168, edited by. J. Piprek, Wiley, Weinheim (Germany) 2007.
  • 29. F. Bernardini, "Spontaneous and piezoelectric polarization: Basic theory vs. practical recipes", Chapter 3 in Nitride Semiconductor Devices. Principles and Simulation, pp. 49-68, edited by J. Piprek) Wiley, Weinheim, 2007.
  • 30. C.Z. Ning, R.A. Indik, J.V. Moloney, W.W. Chow, A. Girndt, S.W. Koch, and R. Binder, "Incorporating manybody effects into modelling of semiconductor lasers and amplifiers", Proc. SPIE 2994, 666-677 (1997).
  • 31. J. Hader, S.W. Koch, and J.V. Moloney, "Microscopic theory of gain and spontaneous emission in GaInNAs laser material", Solid-State Electron. 47, 513-521 (2003).
  • 32. M. Bugajski, "Optical gain in quantum well lasers including many-body effects", Electron. Technol. 30, 89-98 (1997).
  • 33. F. Jahnke and S.W. Koch, "Theory of carrier heating through injection pumping and lasing in semiconductor microcavity lasers", Optics Letters 18, 1438-1440 (1993).
  • 34. T. Rössler, R.A. Indik, G.K. Harkness, J.V. Moloney, and C.Z. Ning, "Modelling the interplay of thermal effects and transverse-mode behaviour in native-oxide-confined vertical-cavity surface-emitting lasers", Phys. Rev. A58, 3279-3292 (1998).
  • 35. S.F. Yu, "Dynamic behaviour of vertical-cavity surfaceemitting lasers", IEEE J. Quantum Electron. 32, 1168-1179 (1996).
  • 36. R.W.H. Engelmann, C.L. Shieh, and C. Shu, "Multiquantum well lasers: Threshold considerations", in Quantum Well Lasers, edited by P.S. Zory, Jr., Academic Press, Boston, 1992.
  • 37. P.G. Eliseev, "Line shape function for semiconductor laser modelling", Electron. Lett. 33, 2046-2048 (1997).
  • 38. M. Brunner, K. Gulden, R. Hövel, M. Moser, and M. Ilegems, "Thermal lensing effects in small oxide confined vertical-cavity surface-emitting lasers", Appl. Phys. Lett. 76, 7-9 (2000).
  • 39. C. Serrat, M.P. van Exter, N.J. van Druten, and J.P. Woerdman, "Transverse mode formation in microlasers by combined gain and index-guiding", IEEE J. Quantum Electron. 35, 1314-1321 (1999).
  • 40. C. Degen, I. Fischer, and W. Elsäber, "Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects", Optics Express 5, 38-47 (1999).
  • 41. J. Kim, J.T. Boyd, H.E. Jackson, and K.D. Choquette, "Near-field spectroscopy of selectively oxidized vertical cavity surface emitting lasers", Appl. Phys. Lett. 76, 526-528 (2000).
  • 42. T.H. Oh, M.R. McDaniel, D.I. Huffaker, and D.G. Deppe, "Guiding and antiguiding effects in epitaxially regrown vertical-cavity surface-emitting lasers", Appl. Phys. Lett. 72, 2782-2784 (1998).
  • 43. P.A. Ross, J.L. Carlsten, D.C. Kilper, and K.L. Lear, "Diffraction from oxide confinement apertures in vertical-cavity lasers", Appl. Phys. Lett. 75, 754-756 (1999).
  • 44. E.A. Bond, P.D. Dapkus, and J.D. O'Brien, "Aperture dependent loss analysis in vertical-cavity surface-emitting lasers", IEEE Photon. Techn. Lett. 11, 397-399 (1999).
  • 45. R.P. Sarzała, "Modelling of the threshold operation of 1.3-µm GaAs-based oxide-confined (InGa)As/GaAs quantum-dot vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron. 40, 629-639 (2004).
  • 46. R.P. Sarzała, "A new approach to improve mode selectivity of higher output oxide-confined vertical-cavity surfaceemitting lasers", Semicond. Sci. Technol. 19, 1122-1124 (2004).
  • 47. R.P. Sarzała, "Physical analysis of an operation of GaInAs/GaAs quantum-well vertical-cavity surface-emitting diode lasers emitting in the 1.3-µm wavelength range", Optica Appl. 35, 225-240 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0021-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.