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Abstract. This paper briefly discusses the limitations of the international Guide ISO GUM framework,
and proposes improving the type A method of uncertainty evaluation of regularly sampled observations. 
The proposal demonstrates the influence of autocorrelation on measurement resultants and for
correlated observations, the calculation of their effective number, smaller than the real value,
is presented. Numerical example from the computer simulation is given. Results obtained by the 
proposed method and classical GUM method are compared and discussed.
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1. Introduction

International Guide ISO GUM [1] recommends to calculate the measured result 
as the mean value and its accuracy depends on the standard deviation evaluated 
by statistical method type A as the uncertainty uA.   

With the practice of a measurement there may exist serious inadequacies of 
the uA value. Even after removal of all known systematic components from the raw
observations, this corrected set of observations may not constitute a sample of pu-
rely random and normal population. There still may remain unknown components
of regular systematic nature such as a trend or harmonics. If more information is 
known of the observations, such as how the collection took place as a series of time, 
e.g. by regular sampling, then some of the undesirable components can be eliminated 
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using input filtration of a proper digital algorithm, e.g. by Least Square Method,
FFT. This was described in detail in Ref. 5 by the authors and Korczyński.

The following problem is discussed in this paper with a proposal for solving it:
Corrected observations are not always statistically independent and they may 

be autocorrelated especially, if the observations are sampled with high density, 
that is if they are inside the equivalent diameter of the autocorrelation function. 
In this case a different formula than this recommended by the GUM for standard
deviation has to be used. 

2. Influence of autocorrelation of regularly sampled observations

2.1. Autocorrelation function 

Let us consider a series of n uniformly sampled the corrected observations qi 
of the constant value x. The estimator rk of the normalized autocorrelation function 
ρk for  the whole population is calculated [2-4, 7-9] as

 

 

( )( )
1

2

1 ,
1 ( )

n k

i i k
i

k
i

q q q q
r

n k s q

−

+
=

− −
=

− −

∑

  
(1) 

 

where k is the number of the periods between observations, q  is the mean value 
of the sample, and s(qi) is the standard deviation of the single observation.

The functionρk is symmetrical for stationary processes, and its calculated 
accuracy decreases as k increases therefore  k < n/4 in order to maintain accurate 
results [2].

2.2. Standard uncertainty of the sample of n  correlated observations qi 

The variance D of the mean value of a linear function of n correlated random 
variables [7 (chapt.18.5-22)] is 
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If a0 = 0 and weight coefficients of observations in the sample are equal, i.e. 
ai = 1/n, then the mean value equals
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Equation (2) can be transformed as follows 
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If all the observations of the sample are taken from the same general population 
then their standard deviations are also equal, i.e. σi = σj = σ, (i = 1, 2,…, n) and 
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The double sum can be transformed in this way,
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Equations (5) and (6) are used to form the theoretical variance of the population 
mean value
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In the practice of measurement, the standard deviation of the population mean 
value σ is estimated from the experimental standard deviation of the sample s(qi), 
where
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Then, the standard deviation ( )s x  of the mean value for a sample of the autocor-
related observations qi is
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where k is the number of sampling periods between observations and Dρ is the 
component dependent on the autocorrelation function ρk,
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The GUM recommendation is
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From Eqs. (10) and (11) 
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Therefore the real value of the mean standard deviation of correlated obse-
rvations is 1 D+ times larger then the estimate using only the GUM recom-
mendations.
Using the GUM definition of the uncertainty, uA, as estimated by the type A 
evaluation to be valid then it must also be valid in the case of regularly sampled 
correlated observations qi, i.e. if ( ) ( ),Au x s x≡  otherwise the more general Eq. 
(10) has to be used in the form
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If the observations are very strongly correlated (deterministically dependent), then 
1k →  and from (10) 
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If observations are not correlated (statistically independent), then 0k →  and
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2.3. Effective number of autocorrelated observations

The last term of Eq. (13) can be transformed into a form similar to the uncer-
tainty uA in GUM, 
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 is the effective number of uncorrelated observations equal

to correlated ones. 

If the observations are uncorrelated ρk = 0, Dρ = 0 and neff = n, and if they are 
strongly joined neff = 1.

In practice, uncorrelated observations can be classified as the ones taken from
a random process during the minimal period ∆T of their sampling, and they are 
higher than half of the width of a rectangle with height 1 and the field equivalent to
the integral of the autocorrelation function ρk.  This means that during the collection
of all observations, the related units have to be known. For regular sampling it is 
sufficient to know the number of the observations.

If a signal is considered with practically no limit in time and has a frequency 
range 0-B, then due to the Nyquist condition it has to be sampled at least twice 
during the period of the highest frequency. In this case, the maximum number of 
regularly sampled statistically independent observations during the entire collection 
period  T is given in Ref. [6] as

 max 2 .effn B T=  (17) 
  

The number of independent observations does not increase even if the sampling
frequency becomes higher.

Table 1 lists the new procedure for uA, the uncertainty estimation of the sample 
of correlated observations which was used to determine the values in Example 1.

Example 1

Below there are given values of “clean” observations qi, obtained after elimi-
nation of the trend and oscillations from the regularly sampled raw observations 
νi, by the Least Square Method, as described in Ref. [5]. 
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Cleaned results of observations of Example 1.

1.1742 1.1653 1.1787 1.1886 1.2137 1.2376 1.2637

1.2386 1.2149 1.1924 1.1804 1.1789 1.1750 1.1818

1.1807 1.1649 1.1940 1.2056 1.2224 1.2111 1.1944

1.1866 1.1931 1.2181 1.2100 1.2064 1.1925 1.1678

1.1848 1.1916 1.2049 1.2102 1.2102 1.2037 1.1972

1.2046 1.2056 1.2112 1.2230 1.2340 1.2228 1.2102

1.2014 1.2115 1.2251 1.2459 1.2192 1.2065 1.1696

1.1940 1.2131 1.2367 1.2351 1.2278 1.2327 1.2427

1.2281 1.2175 1.2159 1.2169 1.2154 1.2095 1.2102

1.1997 1.2112 1.2148 1.2291 1.2257 1.2060 1.1919

1.1789 1.1706 1.1592 1.1759 1.1965 1.2184 1.2033

1.1972 1.1827 1.1993 1.2154 1.2135 1.2132 1.2011

1.1886 1.2072 1.2151 1.2193 1.2211 1.2314 1.2351

1.2396 1.2365 1.2376 1.2254 1.2053 1.1807 1.1982

1.2336 1.2428 1.2378 1.2171 1.2045 1.2019 1.2008

1.2011 1.2262 1.2405 1.2629 1.2431 1.2281 1.2116

1.1855 1.1549 1.1307 1.1472 1.1600 1.1805 1.1838

1.1815 1.1926

Values of qi are presented in Fig. 1. 

Fig. 1. The corrected values qi of the regularly sampled rough observations νi

Table 1 shows the steps to determine the calculated results. Systematic distur-
bances are eliminated from the sample data and their uncertainty uA, is estimated 
by standard GUM method as the standard deviation of the mean value for cor-
rected observations. As the model of the sample distribution Normal (Gauss) one 
is checked by the criterion  χ2 and a positive result is obtained.
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Table 1
Parameters of the sample of  correlated observations normally distributed (Example 1)

1 Cleaning rough results of observations (elimination of known systematic components, 
unknown: non periodic trend, oscillations and outliers)

 2

Mean value of cleaned observations: 
121

1

1 1.2027
121 i

i
V q q

=

= = ≈∑

3

Sample experimental standard deviation 
(calculated due to GUM recommendations)
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GUM uncertainty  
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 5 Criterion  χ2  for  normal (Gauss)  distribution
 

2 2
5, 0.054.888 11.1 = < =   positive result
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Normalized autocorrelation function: 
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Values rk (for k = 0, 1… m = 8 << n = 121): 1;  0.7757;  0.4612;  0.1934;  0.0869;  0.0478;  
0.0353;  0.0259 
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Term for correction of autocorrelation:       
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11
Result of  measurements  (if uB << uA, kP = 2)  

1.2027 0,0098x = ±
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Their normalized autocorrelation function rk as the estimator of ρk for whole 
population is calculated from Eq. (1) for half of the observations and is shown in 
Fig. 2. 

Then, the uncertainty, ( )Aeffu s q≡ , is estimated again for effective number, neff, of 
observations  qi. One can see that n = 121 autocorrelated observations are equal to 
29 ones. The ratio of uncertainties for both numbers is

 ( ) / ( ) / 2.04.A eff A effu q u q n n= =  

The real uncertainty uA eff of the sample is more than 2 times higher then uA cal-
culated by GUM recommendations. Then before evaluating the accuracy it is very
important to test if the sample observations are correlated and to take into account 
the calculation of their effective number neff.

The effective equivalent number neff  as used in Ref. [4] for such measurements 
was first proposed by Dorozhovetz at the 14th International Seminar on Metrolo-
gy in Poland, Oct. 2006. This seminar is annually organized by Rzeszow and Lviv
Technical Universities.

In accordance to the authors’ work [4], the type A uncertainty evaluation of 
autocorrelated regularly sampled observations was also considered in the same time 
on slightly other way by Zhang in Ref. [2] and later used by Witt [3]. 

Summary

In this paper, and in the Refs. 4 and 6, recommendations for the improvement 
in the ISO GUM regarding the procedure of the type A uncertainty evaluation 
are introduced.  Results of the classical GUM recommendation were provided as 
reference also in Table 1 and in example 1. 
We proposed two additional steps to improve the current GUM procedure: 

Fig. 2. Normalized autocorrelation function rk of half of observations of the cleaned sample 1
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1. One should investigate a recorded series of raw observations apart from the ran-
dom component to determine if any regular components exist, such as progressive 
(trend) or harmonics and try to eliminate them, by LSM method [5, 10].

2. For a collection of measurement observations taken within a time limit, the 
method often used to increase accuracy is to increase the sampling frequen-
cy of n observations. However, the higher sampling frequency is limited by 
autocorrelation of nearer observations. Because of this, the effective number
of observations neff < n and real uncertainty is higher than that calculated 
according to the GUM recommendation. The formula for neff is based on the 
autocorrelation function and it is possible only to calculate neff if the relative 
sampling positions of all observations are known, i.e. when the sample results 
are in a regular series of time or of the another variable, e.g. the coordinate 
of the position changed in space. Calculations are simplified if the sampling
process is regular. 

The effective number neff of the correlated observations sample can be 
very simply adapted to uncertainty estimations by GUM recommended type 
A method.

Furthermore, it has to be noticed that for any sample distribution the parameter 
of the highest probability (of the lowest standard deviation) should be always ap-
plied. The mean value is the best statistical parameter only for normal distribution
type and others like a triangular type. For a uniform distribution the midrange and 
for double-exponential type (Laplace)  the median are the best parameters. These
estimators and their standard deviations can be used in the same way as mean 
value and the uncertainty uA recommended by GUM. More details about that are 
in Refs. 4, 8, and 9.

There are additional proposals in [4] to upgrade also the type B uncertainty
evaluation.

The proposal in this paper and all proposals in the previous papers [4, 5] offer
better estimation methods for measurement accuracy. They should be applied to
the practice of measurement in order to gain the needed experience for background 
material maybe of the next Supplement to ISO Guide [1]. 

Received April 14 2008; revised April 2008.
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Z. L. WARSZA, M. DOROZHOVETS

Wyznaczanie niepewności typu A pomiarów o  skorelowanych obserwacjach
Streszczenie. Krótko omówiono ograniczenia zasad wyznaczania niepewności wg zaleceń mię-
dzynarodowego Przewodnika ISO o angielskim akronimie GUM i zaproponowano udoskonalenie 
metody typu A szacowania niepewności pomiarów o regularnie próbkowanych obserwacjach. 
Przedstawiono wpływ autokorelacji na ocenę dokładności wyniku pomiarów i dla skorelowanych 
obserwacji zaproponowano obliczanie efektywnej ich liczby, mniejszej niż rzeczywista. Na symulowa-
nym komputerowo przykładzie liczbowym porównano rezultaty otrzymywane metodą proponowaną 
i  klasyczną wg GUM. 
Słowa kluczowe: pomiar, niepewność typu A, autokorelacja, rozkład prawdopodobieństwa
Symbole UKD: 53.08


