BIULETYN WAT Vol. LVI, Nr 4, 2007

Wpływ anizotropowości podpór na krytyczne prędkości obrotowe silnika turbośmigłowego

PIOTR DRĄŻEK*, IDZI NOWOTARSKI

Wojskowa Akademia Techniczna, Instytut Techniki Lotniczej, 00-908 Warszawa, ul. S. Kaliskiego 2 *WSK "PZL RZESZÓW" S.A., 35-078 Rzeszów, ul. Hetmańska 120

Streszczenie. W artykule zaprezentowano model matematyczny oraz wyniki obliczeń układu o symetrii obrotowej, dla którego promieniowa sztywność podparcia wzdłuż obwodu nie ma cech symetrii osiowej.

Słowa kluczowe: mechanika — dynamika, lotnictwo Symbole UKD: 629.735.015

1. Wstęp

W dotychczasowej praktyce obliczeń inżynierskich krytycznych prędkości obrotowych, np. turbinowych silników lotniczych, przyjmowano, że przednia lub tylna podpora silnika jest nieodkształcalna lub odkształcalna (sprężysta) i ma cechy, tak jak cały obiekt, symetrii osiowej [1, 2]. Przykładem takiego podparcia mogą być cztery równomiernie rozłożone na obwodzie cięgna sprężyste o kierunku promieniowym. Sztywność modelu zastępczego podpory można było uznać jako stałą wzdłuż obwodu to znaczy, że podpora jest izotropowa. Analizując układy mocowania silnika do płyty reduktorowej na śmigłowcach (por. rysunki w tab. 3.4 i 3.5) można zauważyć, że podpora nie jest symetryczna względem układu biegunowego (oś obrotu-promień). Sztywność podpory jest zatem anizotropowa. Niżej podano propozycję metodyki matematycznego opisu tego typu podpory, a następnie omówiono wyniki analizy numerycznej.

2. Reakcje podpory anizotropowo-sprężystej

Niech jedno z cięgien anizotropowego zawieszenia silnika na śmigłowcu ma geometrię usytuowania na kadłubie silnika jak na rysunku 2.1.

Rys. 2.1. Geometria *i*-tej podpory

Zgodnie ze znanymi równaniami wytrzymałości materiałów, siła w *i*-tym cięgnie, *m*-tej podpory (*m*-tego węzła) wynosi

$$N_i^m = k_i \ \Delta l_i^m = \frac{E_i A_i}{l_i} \ \Delta l_i^m, \qquad (2.1)$$

a przemieszczenie Δl_i^m jest równe

$$\Delta l_i^m = W_{\eta i}^m \cos \beta_i + V_{\xi i}^m \sin \beta_i. \tag{2.2}$$

Składowe siły N_i^m w cięgnie w układzie osi ξ – η wynoszą

$$N_{\xi_i}^m = N_i^m \sin \beta_i$$

$$N_{\eta_i}^m = N_i^m \cos \beta_i$$
(2.3)

lub w zapisie macierzowym:

$$\begin{cases} N_{\xi_i}^m \\ N_{\eta_i}^m \end{cases} = \begin{cases} \sin \beta_i \\ \cos \beta_i \end{cases} N_i^m.$$
 (2.4)

Dalej podstawiając równania (2.1), (2.2) do (2.4) i konsekwentnie stosując zapis macierzowy, otrzymano

$$\begin{cases} N_{\xi_{i}}^{m} \\ N_{\eta_{i}}^{m} \end{cases} = \begin{cases} \sin \beta_{i} \\ \cos \beta_{i} \end{cases} k_{i} \Delta l_{i}^{m} = k_{i} \begin{cases} \sin \beta_{i} \\ \cos \beta_{i} \end{cases} \left[\sin \beta_{i}, \cos \beta_{i} \right] \begin{cases} V_{\xi_{i}}^{m} \\ W_{\eta_{i}}^{m} \end{cases} =$$

$$= k_{i} \begin{bmatrix} \sin^{2} \beta_{i} & \frac{1}{2} \sin 2\beta_{i} \\ \frac{1}{2} \sin 2\beta_{i} & \cos^{2} \beta_{i} \end{bmatrix} \begin{cases} V_{\xi_{i}}^{m} \\ W_{\eta_{i}}^{m} \end{cases}.$$

$$(2.5)$$

Na podstawie wcześniejszych rozważań z uwzględnieniem stosownej dla rozpatrywanego problemu macierzy Boile'a

$$\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(2.6)

np. dla deformacji symetrycznych jest

$$\begin{cases} V_{\xi_{i}}^{m} \\ W_{\eta_{i}}^{m} \end{cases} = \mathbf{BS} \{ \delta_{0}^{m} \}^{e} = \\ = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \cos m\alpha & 0 & \\ \sin m\alpha & \\ & \cos m\alpha & \\ & 0 & \cos m\alpha \end{bmatrix} \begin{bmatrix} U_{x0}^{m} \\ V_{t0}^{m} \\ W_{r0}^{m} \\ \varphi_{t0}^{m} \end{bmatrix} = \\ = \begin{bmatrix} 0 & \sin m\alpha & 0 & 0 \\ 0 & 0 & \cos m\alpha & 0 \end{bmatrix} \begin{bmatrix} U_{x0}^{m} \\ V_{t0}^{m} \\ V_{t0}^{m} \\ W_{r0}^{m} \\ \varphi_{t0}^{m} \end{bmatrix} = \mathbf{B}_{\mathbf{S}} \{ \delta_{0}^{m} \}_{e}.$$
(2.7)

Przez analogię do (2.7) wektor sił w przekroju α_i wynosi

$$\begin{cases} N_{\xi_i}^m \\ N_{\eta_i}^m \end{cases} = \mathbf{B}_{\mathbf{s}} \begin{cases} N_{xo}^m \\ N_{to}^m \\ N_{ro}^m \\ M_{to}^m \end{cases}.$$
(2.8)

Podstawiając do (2.5) zależności (2.7) i (2.8), otrzymano

$$\mathbf{B}_{\mathbf{S}} \begin{cases} N_{x0}^{m} \\ N_{t0}^{m} \\ N_{r0}^{m} \\ M_{t0}^{m} \end{cases} = k_{i} \begin{bmatrix} \sin^{2} \beta_{i} & \frac{1}{2} \sin 2\beta_{i} \\ \frac{1}{2} \sin 2\beta_{i} & \cos^{2} \beta \end{bmatrix} \begin{bmatrix} 0 & \sin m\alpha & 0 & 0 \\ 0 & 0 & \cos m\alpha & 0 \end{bmatrix} \{ \boldsymbol{\delta}_{0}^{m} \}_{e} = k_{i} \begin{bmatrix} 0 & \sin^{2} \beta_{i} \sin m\alpha & \frac{1}{2} \sin 2\beta \cos m\alpha & 0 \\ 0 & \frac{1}{2} \sin 2\beta \sin m\alpha & \cos^{2} \beta_{i} \cos m\alpha & 0 \end{bmatrix} \{ \boldsymbol{\delta}_{0}^{m} \}_{e}$$

$$(2.9)$$

lub inaczej

$$\mathbf{B}_{\mathbf{S}} \, \mathbf{N} = \mathbf{b}. \tag{2.10}$$

Ponieważ ${\bf B}_{{\bf S}}$ nie jest macierzą kwadratową, do wyznaczenia wektora ${\bf N}$ zastosowano tzw. pseudoinwersję, tj.

$$\mathbf{N} = \left(\mathbf{B}_{\mathbf{S}}^{T} \, \mathbf{B}_{\mathbf{s}}\right)^{-1} \mathbf{B}_{\mathbf{S}}^{T} \, \mathbf{b},$$

gdzie

$$\mathbf{N} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \sin^{2} m\beta & 0 & 0 \\ 0 & 0 & \cos^{2} m\alpha & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \mathbf{B}_{\mathbf{S}}^{T} \mathbf{b} = \\ = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sin^{2} m\beta} & 0 & 0 \\ 0 & 0 & \frac{1}{\cos^{2} m\alpha} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 0 \\ \sin m\alpha & 0 \\ 0 & \cos m\alpha \\ 0 & 0 \end{bmatrix} \mathbf{b} =$$
(2.11)
$$= \begin{bmatrix} 0 & 0 \\ \frac{1}{\sin m\alpha} & 0 \\ 0 & \frac{1}{\cos m\alpha} \\ 0 & \frac{1}{\cos m\alpha} \\ 0 & 0 \end{bmatrix} \mathbf{b} = k_{i} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \sin^{2} \beta_{i} & \frac{1}{2} \sin 2\beta_{i} \operatorname{ctg} m\alpha & 0 \\ 0 & \frac{1}{2} \sin 2\beta_{i} \operatorname{tg} m\alpha & \cos^{2} \beta_{i} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \{\delta_{0}^{m}\}_{e}.$$

Ostatecznie zgodnie z konwencją zapisu właściwą dla MES mamy

$$\mathbf{N} = \begin{cases} \mathbf{0} \\ N_{t0}^{m} \\ N_{r0}^{m} \\ \mathbf{0} \end{cases} = \left[\mathbf{K}_{i} \right]_{e} \left\{ \delta_{0}^{m} \right\}_{e}, \qquad (2.12)$$

gdzie $[\mathbf{K}_i]_e$ jest niesymetryczną macierzą sztywności cięgna, daną zależnością (2.11).

Analizując strukturę macierzy (2.11), należy zauważyć, że macierz cięgna $[\mathbf{K}_i]_e$ jest symetryczna tylko dla $\beta_i = 0$, a dla $0 < \beta_i \le \pi/2$ jest macierzą niesymetryczną. Komplikuje to rozwiązanie układu równań algebraicznych MES i wymaga innych bardziej złożonych procedur. Całkowanie macierzy (2.11) po obwodzie, tj. po $d\alpha$ należy wykonać z wykorzystaniem pseudofunkcji Diraca $\delta(t)$ o znanych własnościach

$$\delta(t) = 0 \quad \text{dla} \quad t \neq 0$$

$$\int_{-\infty}^{+\infty} \psi(t)\delta(t)dt = \psi(0).$$
 (2.13)

Po tych uwagach dla N cięgien na obwodzie napisać można

$$\left[\mathbf{K}_{i}\right] = \sum_{i=1}^{N} \int_{0}^{2\pi} \delta\left(\alpha - \alpha_{i}\right) \left[\mathbf{K}_{i}\left(\alpha\right)\right]_{e} d\alpha.$$
(2.14)

W następnym punkcie przedstawiono i omówiono wyniki testów numerycznych.

3. Analiza numeryczna

Wpływ anizotropowości podpór na widmo częstości i postaci drgań zbadamy na dwóch przykładach. Pierwszy to prosty przykład testowy w postaci hipotetycznego wału o różnych konfiguracjach podparcia, wirujący lub nie z uwzględnieniem precesji prostej lub bez precesji. Analiza rezultatów pozwoli na ocenę zaproponowanej metodyki oraz ocenę ilościowego i jakościowego charakteru zmian badanych parametrów ruchu.

Drugim przykładem będzie rzeczywista konstrukcja silnika PZL-10W.

3.1. Hipotetyczny wał

Rozpatrzono wał, który jest lewostronnie sztywno podparty, a prawostronnie podparty jest na podporze podatnej o różnym stopniu anizotropowości. Szkic analizo-

wanej hipotetycznej konstrukcji przedstawiono na rysunku 3.1a. Wyniki zestawiono w postaci wykresów i tabel, w których błąd względny $\Delta\Omega$ zdefiniowano jako

$$\Delta\Omega_i = \frac{\Omega_{i(x-z)} - \Omega_{i(x-y)}}{\Omega_{i(x-z)}} \cdot 100 [\%].$$
(3.1)

W celu ustalenia uwagi Czytelnika na rysunku 3.1b pokazano geometrię i sposób kątowego zwymiarowania położenia cięgien sprężystych.

Rys. 3.1. Szkic hipotetycznego wału (a) oraz sposób zwymiarowania cięgien (b)

Pierwszy przypadek obliczeniowy (tab. 3.1) dotyczy podpory o sztywności stałej wzdłuż obwodu (podpora izotropowa). Wyniki zestawiono w dziewięciu kolumnach. Pierwsze trzy dotyczą drgań własnych, pozostałe obrotów krytycznych. Rozwiązania wykazują symetrię względem dwóch wzajemnie prostopadłych płaszczyzn x-z i x-y, co potwierdza także otrzymana wartość błędu względnego (0%).

Kolejny test numeryczny dotyczy podpory o czterech równomiernie rozłożonych na obwodzie cięgnach, lecz nachylonych w stosunku do promienia pod kątem 45°. Ta nieznaczna asymetria sztywności podpory uwidacznia się w otrzymanych wartościach częstości drgań i obrotów krytycznych odnotowanych dla ruchu obiektu we wzajemnie prostopadłych płaszczyznach. Największe różnice odnotowuje się dla drugiej i czwartej postaci drgań (tab. 3.2).

Ostatni test numeryczny hipotetycznej konstrukcji dotyczy dużej asymetrii geometrycznej i sztywnościowej analizowanej podpory. W tym przypadku cztery

cięgna są rozłożone nierównomiernie na obwodzie i usytuowane pod różnymi kątami w stosunku do promienia. Również ich sztywności są różne. Podpora ta konstrukcyjnie odpowiada rzeczywistemu podparciu silnika PZL-10W, które omówimy szczegółowo w następnym punkcie. Rozwiązanie zamieszczone w tabeli 3.3 charakteryzuje się także asymetrią parametrów ruchu, tj. częstości własnych i prędkości krytycznych.

Na rysunkach 3.2-3.5 zilustrowano postaci drgań dla początkowej fazy ruchu $t_0 = 0$. Szczegółowy opis znajduje się pod rysunkami i nie wymaga dalszego komentarza, poza stwierdzeniem zauważalnych różnic w postaciach drgań dla podpory anizotropowej w stosunku do izotropowej. Reasumując, należy stwierdzić, że łatwy w analizie hipotetyczny przykład testowy potwierdza poprawną koncepcję sformułowania modelu matematycznego anizotropowej podpory oraz zgodność otrzymanych rozwiązań z przyjętym modelem fizycznym analizowanej podpory.

Rys. 3.2. Podpora izotropowa, ω = 3000 rad/s, k = +1. Pierwsza postać drgań w płaszczyźnie *x-y-z* (a) oraz *x-z-y* (b)

						Błąd względny [%]	0,00%	0,00%	0,00%	0,00%	0,00%
$\beta_1 = 0^{\circ}$ $\beta_2 = 0^{\circ}$	$\beta_3=0^{\circ}$	$\beta_4=0^{\circ}$			k=+1	Płaszczyzna (x-y)	954,7	1862,8	3206,6	3438,8	4242,7
$\alpha_1 = 0^{\circ}$ $\alpha_2 = 90^{\circ}$	$\alpha_3=180^{\circ}$	$\alpha_4 = 270^{\circ}$	yczne [Hz]	0 [rad/s]		Płaszczyzna (x-z)	954,7	1862,8	3206,6	3438,8	4242,7
			Obroty kryt	ω = 300		Błąd względny [%]	0,00%	0,00%	0,00%	0'00%	0,00%
[m/N] 801×204					k=0	Płaszczyzna (x-v)	935,8	1606,9	2924,8	3505,7	4267,0
∑√ ĭ	> ● C					Płaszczyzna (x-z)	935,8	1606,9	2924,8	3505,7	4267,0
			ch [Hz]			Błąd względny [%]	0,00%	0,00%	0,00%	0,00%	0,00%
(2 0 0 7 0 0 0	8	ść drgań własny	0	3	Płaszczyzna (x-v)	658,6	1489,6	2861,3	3471,4	4208,9
Z		×	Często:			Płaszczyzna (x-z)	658,6	1489,6	2861,3	3471,4	4208,9
					Ω_{ι}		Ω_1	Ω_2	Ω_3	Ω_4	Ω_5

							Błąd względny [%]	4,07%	-20,06%	-10,71%	-27,06%	-13,89%
$\beta_1 = 45^{\circ}$	$\beta_2 = 45^{\circ}$	β ₃ =45°	$\beta_4 = 45^{\circ}$			k=+1	Płaszczyzna (x-v)	1047,7	2386,5	3600,4	4458,0	4849,1
$\alpha_1 = 0^{\circ}$	$\alpha_2 = 90^{\circ}$	α ₃ =180°	α ₄ =270°	yczne [Hz]	0 [rad/s]		Płaszczyzna (x-z)	1092,1	1987,8	3252,1	3508,7	4257,8
				Obroty kryt	$\omega = 300$		Błąd względny [%]	2,52%	-42,64%	-27,25%	-31,88%	1,73%
	427×10° [N/m]	•				k=0	Płaszczyzna (x-v)	1057,1	2476,0	3753,7	4635,6	4206,8
	 <!--</td--><td>10 11 X</td><td></td><td></td><td></td><td></td><td>Płaszczyzna (x-z)</td><td>1084,4</td><td>1735,8</td><td>2949,8</td><td>3514,9</td><td>4280,9</td>	10 11 X					Płaszczyzna (x-z)	1084,4	1735,8	2949,8	3514,9	4280,9
	2	6 7 8 9		ch [Hz]			Błąd względny [%]	4,73%	-44,33%	-27,14%	-31,04%	-0,83%
	(3 4 5	98	ić drgań własnyc	0	3	Płaszczyzna (x-v)	824,7	2370,9	3677,3	4556,5	4258,1
2		2 1 2	K.	Częstoś			Płaszczyzna (x-z)	865,6	1642,7	2892,4	3477,3	4222,9
						Ω_t		Ω_1	Ω_2	Ω_3	Ω_4	Ω_5

TABELA 3.3

115

Rys. 3.3. Podpora izotropowa, ω = 3000 rad/s, k = +1. Druga postać drgań w płaszczyźnie x-y-z (a) oraz x-z-y (b)

Rys. 3.4. Podpora anizotropowa, ω = 3000 rad/s, k = +1. Pierwsza postać drgań w płaszczyźnie x-y-z (a) oraz x-z-y (b)

Rys. 3.5. Podpora anizotropowa, ω = 3000 rad/s, k = +1. Druga postać drgań w płaszczyźnie *x-y-z* (a) oraz *x-z-y* (b)

3.2. Silnik PZL-10W

Mocowanie silników do płyty reduktorowej zilustrowano na szkicu zamieszczonym w tabeli 3.5, natomiast rozmieszczenie poszczególnych cięgien przedniej podpory silnika przedstawiono na szczegółowym rysunku zamieszczonym w tabeli 3.4, w której zestawiono także niezbędne do obliczeń szczegółowe dane techniczne położenia poszczególnych cięgien oraz ich sztywności.

Obliczenia wykonano w dwóch wariantach. Pierwszy hipotetyczny — cięgna rozłożone równomiernie ($\alpha_1 = 0^\circ, \alpha_2 = 90^\circ, \alpha_3 = 180^\circ, \alpha_4 = 270^\circ$) zgodnie z kierunkiem promieniowym ($\beta_i = 0^\circ, i = 1,...,4$), a sztywność ich k_i jest stała i równa wartości średniej $k_{śr} = 2,2801 \times 10^8$ [N/m]. Rozwiązania zestawiono w tabeli 3.5.

Przypadek pierwszy wyników obliczeń zapisano w kolumnach 4 i 5, a dla porównania obliczenia wykonano także dla silnika bez przedniej podpory kolumny 2 i 3. Analiza rozwiązań potwierdza ich fizyczną poprawność. Po pierwsze rozwiązania są symetryczne względem wzajemnie prostopadłych płaszczyzn (x-z) i (x-y) oraz obroty krytyczne rosną, gdy istnieje przednia podpora, bowiem wzrasta sztywność zamocowania badanego obiektu. Wpływ ten jest największy dla pierwszej postaci drgań (porównaj tab. 3.5, kolumny 6 i 7). Jest to zrozumiałe, bowiem pierwsza częstość drgań własnych, jak wykazała szczegółowa analiza numeryczna, której

TABELA 3.4

wyniki zamieszczono w pracy [3] jest "pierwszą giętną postacią drgań całego silnika". Pozostałe częstości odpowiadają jego głównym zespołom.

Podsumowaniem analizy numerycznej są obliczenia dynamiczne całego silnika na anizotropowych podporach. Wyniki zapisano także w tabeli 3.5, kolumna 8 i 9, a błąd względny w procentach w stosunku do wyników obliczeń dla podpory osiowosymetrycznej (izotropowej) zawierają kolumny 10 i 11. W przypadku tym obserwuje się nieznaczne zróżnicowanie otrzymanych częstości drgań w obu wzajemnie prostopadłych płaszczyznach (desymetria rozwiązania). Wielkość tego zróżnicowania zależy od numeru postaci drgań, których cztery pierwsze przebiegi zilustrowano na rysunkach 3.6-3.9.

Jeżeli za miarę sztywności kierunkowej podpory anizotropowej przyjmiemy wartość energii odkształcenia sprężystego odniesioną do jej maksymalnej wartości, to na wykresie biegunowym (polarnym) obserwuje się dla danych z tabeli 3.4 i obciążenia konstrukcji jednostkowym przemieszczeniem symetrycznym charakter zmiany tej wielkości jak na rysunku 3.10. Z wykresu tego można odczytać, że główne centralne osie bezwładności są obrócone o około 38° w kierunku przeciwnym do

Tabela 3.5

Rys. 3.6. Pierwsza postać drgań silnika PZL-10W na anizotropowej przedniej podporze: a) drgania w płaszczyźnie (Oxz), Ω_1 = 465,4 Hz; b) drgania w płaszczyźnie (Oxy), Ω_1 = 459,2 Hz

Rys. 3.7. Druga postać drgań silnika PZL-10W na anizotropowej przedniej podporze: a) drgania w płaszczyźnie (Oxz), Ω_2 = 509,5 Hz; b) drgania w płaszczyźnie (Oxy), Ω_2 = 513,2 Hz

Rys. 3.8. Trzecia postać drgań silnika PZL-10W na anizotropowej przedniej podporze: a) drgania w płaszczyźnie (Oxz), $\Omega_3 = 574,9$ Hz; b) drgania w płaszczyźnie (Oxy), $\Omega_3 = 581,9$ Hz

Rys. 3.9. Czwarta postać drgań silnika PZL-10W na anizotropowej przedniej podporze: a) drgania w płaszczyźnie (Oxz), Ω_4 = 622,8 Hz; b) drgania w płaszczyźnie (Oxy), Ω_4 = 632,0 Hz

ruchu wskazówek zegara, co uzasadnia od strony jakościowej poprawność otrzymanych rozwiązań.

Rys. 3.10. Zmiana wzdłuż obwodu bezwymiarowej energii odkształcenia sprężystego podpory anizotropowej

Podsumowanie

Analiza otrzymanych rozwiązań potwierdza poprawność koncepcji i matematycznego opisu podparcia, które nie wykazuje cech symetrii osiowej. Zawieszenie silników turbośmigłowych na śmigłowcach w przypadku przedniej podpory charakteryzuje się prawie zawsze tego typu sposobem podparcia (por. węzeł A na szkicu w tabeli 3.5 oraz jej realizację praktyczną zilustrowaną na szkicu w tabeli 3.4). Podpora tylna B na rysunku w tabeli 3.5 to typowe wielośrubowe połączenie kołnierzowe do masywnej obudowy reduktora. Stąd wiele testów numerycznych, których wyniki zamieszczono w tabeli 3.5, pozwala na sformułowanie następujących wniosków przydatnych w procesie konstrukcyjno-obliczeniowym:

- Wpływ przedniego podparcia nieznacznie zwiększa podstawowe częstości drgań własnych badanego obiektu (por. tab. 3.5, kolumny [2-3] z [4-5]), lecz jego istnienie jest niezbędne ze względu na wielkość przemieszczeń promieniowych w płaszczyźnie węzła A.
- Anizotropowość przedniego podparcia ma nieznaczny wpływ na asymetrię rozwiązania, co wynika z bardzo sztywnego podparcia węzła B, a szczegółowo zostało opisane wyżej.

3. Wielkość asymetrii rozwiązania uzależniona jest od postaci drgań, co zilustrowano w kolumnach [10-11] tabeli 4.5, a także na rysunkach 3.6-3.9.

W ostatecznej konkluzji nie należy jednak stwierdzić, że w każdym przypadku obliczeń inżynierskich można pominąć anizotropowość podparcia i zastąpić go jego prostszym modelem — podparciem izotropowym, które nie desymetryzuje macierzy sztywności podporowej, co upraszcza schematy numerycznego rozwiązywania. Gdyby podpora B była mniej sztywna i jednocześnie charakteryzowała się anizotropowym sposobem podparcia, to nawet w ramach przybliżonych obliczeń inżynierskich fakt ten nie mógłby zostać pominięty bez szkody dla dokładności obliczeń.

Artykuł wpłynął do redakcji 16.11.2007 r. Zweryfikowaną wersję po recenzji otrzymano w styczniu 2008 r.

LITERATURA

- Z. DŻYGADŁO, M. ŁYŻWIŃSKI, J. OTYŚ, S. SZCZECIŃSKI, R. WIATREK, Zespoły wirnikowe silników turbinowych, WKiŁ, Warszawa, 1982.
- [2] I. NOWOTARSKI, Obliczenia statyczne i dynamiczne turbinowych silników lotniczych metodą elementów skończonych, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa, 2001.
- [3] P. DRĄŻEK, Badanie wpływu parametrów konstrukcyjnych silnika turbinowego PZL-10W na charakterystyki dynamiczne z wykorzystaniem różnych modeli matematycznych, rozprawa doktorska, WAT, Warszawa, 2005.

P. DRĄŻEK, I. NOWOTARSKI

Influence of anisotropy of supports on critical rotational speeds of a propeller turbine engine

Abstract. The paper presents mathematical model and calculation results for a rotational symmetry system, the support radial stiffness of which, along the circuit, has no axial symmetry. Keywords: mechanics — dynamics, aviation Universal Decimal Classification: 629.735.015