BIULETYN WAT Vol. LVI, Nr 2, 2007

Charakterystyki detonacyjne FOX-7 i równania stanu jego produktów detonacji

WALDEMAR A. TRZCIŃSKI, STANISŁAW CUDZIŁO, ZBIGNIEW CHYŁEK, LESZEK SZYMAŃCZYK

Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, 00-908 Warszawa, ul. S. Kaliskiego 2

Streszczenie. Dokonano optymalizacji metody rekrystalizacji nowego materiału wybuchowego DAD-NE (FOX-7) pod kątem uzyskania drobnoziarnistego produktu o obniżonej wrażliwości na bodźce mechaniczne. Zbadano wrażliwość otrzymanego produktu na falę uderzeniową. Natomiast ciśnienie detonacji oraz równania stanu dla produktów detonacji wyznaczono dla gruboziarnistego FOX-7. Słowa kluczowe: materiały wybuchowe, detonacja, równania stanu produktów detonacji Symbole UKD: 662.2

1. Wstęp

W naszych wcześniejszych pracach zajmowaliśmy się optymalizacją procesu syntezy DADNE (FOX-7), badaniem składu chemicznego i fazowego próbek krystalizowanych z różnych rozpuszczalników oraz ich analizą termiczną [1-3]. Badaliśmy również różne metody rekrystalizacji produktu syntezy oraz określiliśmy podstawowe charakterystyki użytkowe nowego materiału wybuchowego (wrażliwość na tarcie i uderzenie, prędkość i ciepło detonacji oraz energię Gurney'a) [4-5]. Ta praca zawiera wyniki dalszych badań nad rekrystalizacją FOX-7 oraz rezultaty pomiarów kolejnych charakterystyk detonacyjnych. Wykonano test szczelinowy w celu określenia wrażliwości materiału na falę podmuchową. Ciśnienie detonacji oszacowano na podstawie wyników tzw. testu wodnego. Wyznaczono tzw. efektywny wykład izentropy oraz współczynniki izentropy JWL (Jones-Wilkins-Lee) dla produktów detonacji FOX-7. Do tego celu wykorzystano wyniki testu cylindrycznego.

2. Rekrystalizacja FOX-7

FOX-7 otrzymywano w dwuetapowym procesie, którego dokładny opis zawiera praca [1]. Najpierw kondensowano chlorowodorek acetamidyny z malonianem dietylu. Reakcja zachodzi w środowisku metanolu, w obecności metanolanu sodu, dając 2-metylopirymidyna-4,6-dion(1). W następnym etapie surowy produkt kondensacji poddawano nitrowaniu dymiącym kwasem azotowym w obecności stężonego kwasu siarkowego. FOX-7 wydzielano przez wlanie mieszaniny reakcyjnej do wody z lodem. Wstępne oczyszczenie i odkwaszenie produktu polegało na długotrwałym gotowaniu surowego FOX-7 w 0,1% roztworze wodnym NaHCO₃. Produktem tego etapu były drobne, porowate kryształy o nieregularnym kształcie. Następnym etapem oczyszczania była rekrystalizacja. Jej celem było nie tylko usunięcie zanieczyszczeń chemicznych, ale również uzyskanie sferoidalnych kryształów o gładkich powierzchniach i dużym rozdrobnieniu.

W pracy [4] FOX-7 rekrystalizowano z roztworu w mieszaninie wody i N-metylopirolidonu (NMP) 75/25. Uzyskano gruboziarnisty produkt o średnicach cząstek dochodzących do 500 µm. W tej pracy w pierwszym etapie wprowadzano FOX-7 porcjami do NMP. Otrzymaną zawiesinę mieszano i ogrzewano, aż do otrzymania klarownego roztworu. Następnie cały roztwór wylewano do wody w temperaturze pokojowej. Otrzymaną zawiesinę mieszano energicznie, sączono, a osad FOX-7 przemywano na sączku wodą. Produkt pozostawiono do wysuszenia na powietrzu. Wydajność procesu wynosiła ok. 98%. Zdjęcia SEM kryształów uzyskanych w tych warunkach przedstawiono na rysunku 1. Uzyskano drobnoziarnisty produkt o dość regularnych kształtach.

Rys. 1. Zdjęcia FOX-7 rekrystalizowanego z NMP w środowisku wodnym

Na rysunku 2 przedstawiono procentowy rozkład wielkości cząstek w próbce FOX-7 po rekrystalizacji. Średnice cząstek zostały oszacowane przy umownym założeniu, że kryształy są kulami. Największy udział ilościowy (około 75%) mają kryształy o średnicach mniejszych od 5 µm. Zdecydowanie inaczej rozkłada się udział

Rys. 2. Procentowy rozkład wielkości cząstek FOX-7 po rekrystalizacji

masowy cząstek w badanej próbce. Dominują cząstki o rozmiarach od 5 do 11 μ m. Tego rodzaju produkt rekrystalizacji można dodawać do FOX-7 o przewadze dużych kryształów (powyżej 50 μ m — [4]) w celu zwiększenia gęstości wyprasek.

3. Wrażliwość na falę uderzeniową

Do badań wrażliwości na falę uderzeniową wykorzystano rekrystalizowany FOX-7 o rozkładzie cząstek pokazanym na rysunku 2. Wypraski z tego produktu miały gęstość $\rho_0 = 1610 \text{ kg/m}^3$. Ta zaskakująco niska gęstość spowodowana była "puchnięciem" wyprasek po wyjęciu z matrycy. Do oceny wrażliwości na falę uderzeniową zastosowano próbę szczelinową (ang. *gap test*). Polega ona na pobudzaniu badanego materiału wybuchowego falą uderzeniową, generowaną detonacją ładunku silnego materiału wybuchowego. Fala ta po przejściu przez warstwę obojętnego chemicznie materiału propaguje się w ładunku testowanego materiału wybuchowego. Jako wynik próby podaje się dwie wysokości przegrody, przy których nastąpi lub nie nastąpi detonacja. Schemat układu do testu szczeli-nowego przedstawiono na rysunku 3.

Kostki FOX-7 o średnicy 25 mm elaborowane były do rurki miedzianej. Na płycie z ertalonu ustawiano generator fali uderzeniowej w postaci cylindrycznego ładunku heksogenu flegmatyzowanego. Wykonywano szereg prób, zmieniając wysokość przegrody, aż do momentu określenia granicy pobudzenia z dokładnością 1 mm. Za pozytywną uważano próbę, przy której nastąpiło całkowite zniszczenie rurki miedzianej i powstanie otworu w płytce stalowej, na której znajdował się ładunek badanego materiału wybuchowego. W przypadku braku detonacji nie powstawał otwór w płytce stalowej, a rurka miedziana była tylko częściowo rozrywana.

Rezultaty uzyskane w teście szczelinowym dla FOX-7 przedstawiono na rysunku 4 w postaci słupków odpowiadających grubości przegrody z ertalonu, przy

Rys. 3. Układ do próby szczelinowej: 1 — krążek centrujący zapalnik; 2 — ładunek heksogenu flegmatyzowanego (średnica $\Phi = 50$ mm, wysokość h = 50 mm); 3 — inercyjna przegroda (ertalon) — $\Phi = 100$ mm; 4 — ładunek FOX-7 ($\Phi = 25$ mm) w rurce miedzianej o grubości 2,5 mm; 5 — płyta stałowa

Rys. 4. Wyniki testu szczelinowego dla FOX-7 i trotylu

której stwierdzono wystąpienie detonacji (słupek czarny) oraz brak detonacji (słupek szary). Dla porównania pokazano również wynik próby dla trotylu. Otrzymane wyniki potwierdzają wniosek podany w pracy [4], że otrzymany w skali laboratoryjnej FOX-7 można zaliczyć do materiałów wybuchowych o niskiej wrażliwości na bodźce mechaniczne.

4. Ciśnienie detonacji

Ciśnienie detonacji i równania stanu produktów detonacji wyznaczono dla FOX-7 rekrystalizowanego metodą opisaną w pracy [4]. Ten gruboziarnisty produkt umożliwiał zaprasowanie ładunków do gęstości $\rho = 1780 \text{ kg/m}^3$. Do wyznaczenia ciśnienia detonacji zastosowano odmianę testu wodnego, w której za pomocą rentgenografii impulsowej rejestruje się kształt frontu skośnej fali uderzeniowej w cylindrycznej warstwie wody, wewnątrz której detonowany jest ładunek badanego materiału wybuchowego. Eksperymentalny kształt fali porównuje się z konfiguracjami falowymi otrzymanymi z numerycznego modelowania takiego procesu. Te ostatnie otrzymywane są w postaci zależności położenia frontu fali uderzeniowej w wodzie od wykładnika izentropy produktów detonacji (γ) napędzających warstwę wody. Wartość γ , dla której rozwiązanie najlepiej przybliża zarejestrowany profil, wykorzystywana jest do obliczenia ciśnienia z następującej zależności:

$$p_{\rm CJ} = \frac{\rho_0 D^2}{\gamma + 1},$$
 (1)

gdzie: p_{CI} oznacza ciśnienie w punkcie Chapmana-Jougueta (CJ);

 ρ_0 — gęstość początkową materiału wybuchowego;

D — prędkość detonacji.

Szczegółowy opis tej metody wyznaczania ciśnienia detonacji można znaleźć w pracy [6].

Układ do wybuchowego napędzania cylindrycznej warstwy wody przedstawiono na rysunku 5. Ładunek FOX-7 o średnicy 25 mm i długości 250 mm umieszczany był wewnątrz rury winidurowej, stanowiącej pojemnik na wodę, o średnicy we-

Rys. 5. Schemat układu do testu wodnego: 1 — zapalnik; 2 — ładunek FOX-7; 3 — woda; 4 — czujniki do pomiaru prędkości detonacji; 5 — czujnik wyzwalający układ rejestrujący

wnętrznej 71 mm i grubości ścianki 2 mm. W ładunku materiału wybuchowego montowano czujniki zwarciowe umożliwiające pomiar prędkości detonacji oraz wyzwolenie rentgenografu.

Wykonano dwa testy. Rentgenogram początkowej fazy procesu napędzania otoczki wodnej produktami detonacji kompozycji FOX-7 wraz z naniesionymi frontami falowymi oraz profilem ładunku pokazano na rysunku 6 (test nr 1).

Rys. 6. Rentgenogram początkowej fazy napędzania cylindrycznej warstwy wody produktami detonacji FOX-7 z naniesionymi frontami falowymi

Obraz falowy początkowej fazy procesu napędzania otoczki wodnej można przedstawić w sposób pokazany na rysunku 7 (x — współrzędna osiowa, r — współrzędna radialna). Przy odpowiednich założeniach opisanych w pracy [6], w wyniku

Rys. 7. Obraz falowy początkowej fazy procesu napędzania cylindrycznej otoczki wodnej produktami detonacji

numerycznego rozwiązania problemu detonacji cylindrycznego ładunku materiału wybuchowego w otoczce wodnej można otrzymać jednoznaczny związek między wartością bezwymiarowego położenia frontu skośnej fali uderzeniowej $R_{FU} = r_{FU}/r_0$ dla bezwymiarowej współrzędnej osiowej $X_{FU} = x_{FU}/r_0 = 1$ i wykładnikiem izentropy γ produktów detonacji. Związek ten wykorzystano do wyznaczenia wartości wykładnika γ dla badanych mieszanin wybuchowych.

W wyniku obróbki komputerowej zdjęć rentgenowskich otrzymano kształt frontu skośnej fali uderzeniowej w wodzie. Profile fali detonacyjnej i uderzeniowej uzyskane w teście nr 1 pokazano na rysunku 8.

Rys. 8. Położenie frontu fali detonacyjnej i uderzeniowej w wodzie (test 1)

Po określeniu wartości bezwymiarowego parametru $R_{\rm FU}$ na podstawie otrzymanego z testu wodnego profilu fali uderzeniowej w wodzie, wyznaczono wartość wykładnika γ , wykorzystując przedstawione w formie graficznej teoretyczne zależności $R_{\rm FU}$ od γ (rys. 9). Sposób wyznaczania wartości γ opisano szczegółowo w pracy [6]. Ciśnienie detonacji obliczano następnie ze wzoru (1).

Wyniki otrzymane dla badanego FOX-7 przedstawiono w tabeli 1. Dla porównania w tabeli zamieszczono również wartości prędkości detonacji, wykładnika izentropy i ciśnienia obliczone za pomocą kodu do obliczeń termochemicznych CHEETAH (parametry z indeksem *t*). W obliczeniach kodem CHEETAH zastosowano zestaw parametrów BKWC [7]. Bardzo dobra zgodność pomiaru i obliczeń sugeruje, że mimo niedużej średnicy ładunków zanurzonych w wodzie, osiągane wartości parametrów detonacji są zbliżone do parametrów detonacji idealnej.

Rys. 9. Zależność bezwymiarowego położenia fali uderzeniowej w wodzie dla $X_{FU}=x_{FU}/r_0=1$ od wykładnika izentropy produktów detonacji γ

TABELA 1

Charakter	ystyki	detonacy	rjne	FOX-7	/
-----------	--------	----------	------	-------	---

Nr testu	$ ho_0$ [kg/m ³]	D [m/s]	$R_{\rm FU}$	γ	₽сј	D_{t}	γ _t	₽ _{CJ, t}
1	1780	8405	1,568	3,31	29,2	0452	3,335	29,34
2	1780	8375	1,561	3,39	28,4	8455		

Prędkość i ciśnienie detonacji otrzymanego FOX-7 są zbliżone do parametrów detonacyjnych heksogenu flegmatyzowanego woskiem (heksogen/wosk 95/5) — $D = 8270 \text{ m/s}, p_{CJ} = 26,3 \text{ GPa} - [8]$. FOX-7 może być więc dobrym zamiennikiem stosunkowo wrażliwego heksogenu flegmatyzowanego.

5. Równania stanu produktów detonacji

Do wyznaczenia równania stanu produktów detonacji FOX-7 wykorzystano wyniki testu cylindrycznego. Test ten polega na rejestracji procesu miotania rurek miedzianych produktami detonacji badanego materiału wybuchowego. Materiał wybuchowy elaborowano do rurek miedzianych o promieniu wewnętrznym $r_w = 12,5$ mm i promieniu zewnętrznym $r_z = 15$ mm. Długość rur wynosiła l = 300 mm. Schemat układu wybuchowego wykorzystywanego w teście cylindrycznym przedstawiono na rysunku 10.

Rys. 10. Schemat ładunku do rentgenograficznej rejestracji napędzania rury miedzianej: 1 — zapalnik; 2 — rurka; 3 — ładunek badanego materiału wybuchowego; 4 — czujnik wyzwalający generator opóźnień; 5 — czujniki do pomiaru prędkości detonacji

Podobnie jak w przypadku testu wodnego, zastosowano technikę rejestracji rentgenograficznej. Wykonano trzy testy. Przykładowy rentgenogram rurki miotanej produktami detonacji FOX-7 przedstawiono na rysunku 11.

Rys. 11. Rentgenogram otoczki napędzanej produktami detonacji FOX-7

Po obróbce graficznej zdjęć przedstawiających kształt miotanych rurek, dokładnie odczytano zależność promienia zewnętrznej ścianki rurki r_z od współrzędnej osiowej x (rys. 12). Zależność ta była podstawą wyznaczenia stałych w równaniach izentrop rozprężania produktów detonacji.

Rys. 12. Zależność położenia zewnętrznej ścianki rurki miedzianej od współrzędnej osiowej

5.1. Efektywny wykładnik izentropy

Jeżeli właściwości fizyczne ekspandujących produktów detonacji opisuje adiabata Poissona, to wykładnik tej adiabaty wyznaczany dla pewnego zakresu zmian objętości nazywany jest tzw. efektywnym wykładnikiem izentropy (γ_{ef}). Metoda wyznaczania efektywnego wykładnika izentropy produktów detonacji polega na porównywaniu eksperymentalnej zależności położenia zewnętrznej ścianki rurki r_z od współrzędnej osiowej x z podobnymi zależnościami otrzymanymi z numerycznego modelowania dla zadanych wartości wykładnika izentropy i wyborze

Rys. 13. Zmierzony i obliczony profil zewnętrznej ścianki rurki miedzianej miotanej produktami detonacji FOX-7

rozwiązania najbardziej zbliżonego do danych eksperymentalnych [9]. Aby takie porównanie było możliwe, niezbędne jest dokładne zamodelowanie procesu miotania cylindrycznego linera (rurki) produktami detonacji. W tym celu wykorzystano kod numeryczny opisany szczegółowo w pracy [10]. W zastosowanym modelu przyjęto, że właściwości produktów detonacji opisuje adiabata Poissona, zaś właściwości materiału napędzanej rurki — równanie stanu Mie-Gruneisena. Porównanie wyników modelowania z danymi eksperymentalnymi pokazano na rysunku 13.

Wartości efektywnego wykładnika izentropy γ_{ef} dla produktów detonacji FOX-7 wynoszą 3,26, 3,19 i 3,22, wyznaczone na podstawie wyników odpowiednio testów 1, 2 i 3. Średnia wartość wykładnika wynosi więc 3,22. Jak należało oczekiwać, różni się ona od wyznaczonej w teście wodnym średniej wartości wykładnika izentropy w punkcie Chapmana-Jougueta ($\gamma = 3,35$).

5.2. Współczynniki równania JWL

Z wyników badań eksperymentalnych i rozważań teoretycznych wiadomo, że w rzeczywistości wykładnik izentropy produktów detonacji skondensowanych materiałów wybuchowych zmienia się wzdłuż izentropy rozprężania i dla dużych objętości przyjmuje wartość 1,2÷1,4. Równaniem izentropy, opisującym w sposób bardziej realny właściwości fizyczne rozprężających się produktów detonacji, jest izentropa JWL (Jones-Wilkins-Lee):

$$p_{x} = A e^{-R_{1}V} + B e^{-R_{2}V} + C V^{(-1-\omega)}, \qquad (2)$$

gdzie: *A*, *B*, *C*, *R*, *R*, *i* ω — stałe, *V* = v/v_0 , gdzie v_0 jest objętością właściwą materiału wybuchowego. Stałe *A*, *B*, *C*, *R*, *R*, *i* ω wyznacza się w sposób półempiryczny.

W metodach wyznaczania stałych równania JWL wykorzystuje się związki między nimi wynikające z praw zachowania zapisanych dla punktu CJ. Stałe *A*, *B*, *C* można wówczas wyznaczyć jako funkcje R_1 , R_2 , ω oraz ρ_0 , *D*, E_0 i p_{CJ} . Gęstość materiału wybuchowego oraz wartości prędkości detonacji, energii detonacji i ciśnienia w punkcie CJ określa się eksperymentalnie. Pozostałe parametry R_1 , R_2 i ω wyznaczane są na podstawie testu cylindrycznego w sposób podobny jak określanie wartości efektywnego wykładnika izentropy, tzn. przez porównanie eksperymentalnej zależności położenia zewnętrznej ścianki rurki od współrzędnej osiowej z profilami otrzymanymi z numerycznego modelowania dla różnych wartości R_1 , R_2 , ω i wybór rozwiązania najbardziej zbliżonego do danych eksperymentalnych [11-12].

Metodę powyższą zastosowano do wyznaczenia stałych równania JWL dla produktów detonacji FOX-7. Wykorzystano określoną w pracy [4] wartość energii detonacji $E_0 = 5060$ J/g. Natomiast ciśnienie detonacji oszacowano, wykorzystu-

jąc wyznaczoną w teście wodnym wartość wykładnika izentropy w punkcie CJ – $\gamma = 3,35$. Do wyznaczenia współczynników izentropy produktów detonacji wykorzystano wyniki testu cylindrycznego numer 3, ponieważ uzyskany w tym teście profil rurki miedzianej znajduje się pomiędzy profilami zarejestrowanymi w testach 1 i 2. Gęstość ładunków FOX-7 w tej próbie wynosiła $\rho_0 = 1780 \text{ kg/m}^3$, zaś zmierzona prędkość detonacji D = 8325 m/s. Obliczone wartości stałych JWL podano w tabeli 2.

TABELA 2

Materiał wybuchowy	Р _{СЈ} [GPa]	E ₀ [GPa]	A [GPa]	B [GPa]	C [GPa]	R_1	R_2	ω
FOX-7	28,4	9,0	14,14339	21,6637	1,23412	5,54	1,51	0,32

Ciśnienie detonacji i stałe izentropy JWL dla produktów detonacji FOX-7

Na rysunku 14 przedstawiono w sposób graficzny wyznaczoną izentropę JWL. Dla porównania zamieszczono również izentropę obliczoną za pomocą kodu CHEETAH oraz izentropę ze stałym wykładnikiem γ_{ef} . Jak było do przewidzenia, zdecydowaną różnicę między izentropą JWL i izentropą o stałym wykładniku obserwuje się dla dużych objętości produktów detonacji.

Rys. 14. Izentropy rozprężania produktów detonacji FOX-7

6. Podsumowanie

W pracy dokonano rekrystalizacji FOX-7 polegającej najpierw na rozpuszczeniu w NMP, a następnie wytrąceniu z roztworu przez wylanie go do wody. Uzyskano drobnokrystaliczny produkt o regularnych kształtach. Zbadano jego wrażliwość FOX-7 na falę uderzeniową i stwierdzono, że jest ona niższa od wrażliwości trotylu. Oznacza to, że uzyskany produkt można zaliczyć do materiałów wybuchowych o obniżonej wrażliwości na bodźce mechaniczne.

Wyznaczono prędkość i ciśnienie detonacji oraz równania stanu produktów detonacji gruboziarnistego FOX-7. Określono efektywny wykładnik izentropy oraz współczynniki równania JWL dla produktów detonacji. Zmierzone wartości prędkości i ciśnienia FOX-7 są zbliżone do parametrów heksogenu flegmatyzowanego woskiem. Fakt ten oraz niska wrażliwość FOX-7 sugerują, że może on być zamiennikiem stosunkowo wrażliwego heksogenu.

Podziękowanie

Autorzy pragną podziękować dr. inż. Andrzejowi Dębskiemu za wykonanie zdjęć mikroskopowych oraz określenie rozkładu granulometrycznego FOX-7.

Badania wykonano przy wsparciu finansowym Ministerstwa Nauki i Informatyzacji w ramach projektu badawczego nr 0 T00C 01528 realizowanego w latach 2005-2007.

Artykuł wpłynął do redakcji 17.01.2007 r. Zweryfikowaną wersję po recenzji otrzymano w marcu 2007 r.

LITERATURA

- Z. CHYŁEK, S. CUDZIŁO, J. BŁĄDEK, S. PIETRZYK, Optymalizacja syntezy 1,1-diamino-2,2-dinitroetenu, Biul. WAT, 54, 5-6, 2005.
- [2] S. CUDZIŁO, Z. CHYŁEK, R. DIDUSZKO, Krystalizacja i analiza 1,1-diamino-2,2-dinitroetenu (DADNE), Biul. WAT, 54, 5-6, 2005.
- [3] S. CUDZIŁO, Z. CHYŁEK, R. DIDUSZKO, Crystallization and characterization of 1,1-diamino-2,2--dinitroethaene (DADNE), 36th International Annual Conference of ICT & 32nd International Pyrotechnics Seminar, Karlsruhe, 2005.
- [4] W. A. TRZCIŃSKI, S. CUDZIŁO, Z. CHYŁEK, L. SZYMAŃCZYK, Rekrystalizacja i badanie parametrów użytkowych FOX-7, Biul. WAT, 55, 2, 2006.
- W. A. TRZCIŃSKI, S. CUDZIŁO, Z. CHYŁEK, L. SZYMAŃCZYK, Investigation of sensitivity and detonation properties of FOX-7, 37th International ICT-Conference, Karlsruhe, 2006, P57-1 — P57-10.
- [6] W. A. TRZCINSKI, S. CUDZIŁO, L. SZYMAŃCZYK, Determination of the detonation pressure from a water test, Engineering Transactions, 49, 4, 2001.
- [7] L. E. FRIED, CHEETAH 1.39 User's Manual, Lawrence Livermore National Laboratory 1996.

- [8] W. A. TRZCIŃSKI, S. CUDZIŁO, L. SZYMAŃCZYK, Wyznaczanie ciśnienia detonacji z testu wodnego, Biul. WAT, 48, 12, 1999.
- [9] S. CUDZIŁO, R. TRĘBIŃSKI, W. TRZCIŃSKI, Determination of the effective exponent of isentrope for the detonation products of high explosives, Chem. Phys. Reports, 1997, vol. 16(9), 1719-1732.
- [10] R. TRĘBIŃSKI, W. TRZCIŃSKI, E. WŁODARCZYK, Theoretical analysis of the process of driving a cylindrical liner by the products of grazing detonation, J. Techn. Phys., 29, 3-4, 1988.
- [11] R. TRĘBIŃSKI, W. A. TRZCIŃSKI, Determination of an expansion isentrope for detonation products of condensed explosives, J. Techn. Phys., 40, 4, 1999.
- [12] R. TRĘBIŃSKI, W. A. TRZCIŃSKI, Modelling of the process of driving a cylindrical tube by the detonation products described by the JWL equation of state, J. Techn. Phys., 38, 4, 1997.

W. A. TRZCIŃSKI, S. CUDZIŁO, Z. CHYŁEK, L. SZYMAŃCZYK

Detonation characteristics of FOX-7 and equations of state for its detonation products

Abstract. Optimization of the recrystallization method of the new explosive FOX-7 has been done to obtain a fine-grained product of low-sensitivity to the mechanical stimuli. The sensitivity to shock wave has been investigated for the obtained product. The detonation pressure and equations of state for the detonation products of coarse-grained FOX-7 have been determined, as well. **Keywords:** explosives, detonation, equations of state of detonation products **Universal Decimal Classification:** 662.2