PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sensor properties of planar waveguide structures with grating couplers

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of theoretical analysis as well as the results of experimental research involving planar sensor structures with input grating couplers of the period Δ = 800 nm. In the theoretical part of the paper we discussed the influence of the parameters of a sensor structure on it sensitivities. The experimental part of the work presents the results of experimental research involving the influence of refractive index of the cover on the coupling characteristics of sensor structures with grating couplers. The full widths at half maximum (FWHM) were from 0.023° to 0.029°. For the investigated structures we estimated detection thresholds for the changes of refractive index of the cover and the changes of sensitive film thickness. It has been demonstrated that by the application of the elaborated structures we can detect minimal changes of the refractive index (Δnc)min = 2.1×⁻⁶ when the refractive index of the cover nc = 1.333 and (Δnc)min =1.0×⁻⁶ when nc = 1.515. For sensitive films of the thickness w<100 nm, by using the elaborated structures, we can detect mean changes of the thickness along the values lower than 10⁻³ nm.
Twórcy
Bibliografia
  • 1. G. Boisde and A. Harmer, "Chemical and Biochemical Sensing with Optical Fibers and Waveguides'", Artech House, Boston, London, 1996.
  • 2. P. Karasiński, "Influence of waveguide's parameters on the sensitivity of planar sensors with difference interference", Opt. Appl. 32, 776-795 (2002).
  • 3. K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couplers as integrated-optical chemical sensors", J. Opt. Soc. Am. B6, 209-220 (1989).
  • 4. P.M. Nellen and W. Lukosz, "Integrated input grating coupler as chemo- and immunosensors", Sensors Actuators B1, 592-596 (1990).
  • 5. W. Lukosz, "Integrated optical chemical and direct biochemical sensors", Sensors Actuators B29, 37-50 (1995).
  • 6. W. Lukosz and K. Tiefenthaler, "Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials", Optics Lett. 8, 537-539 (1983).
  • 7. K. Heuberger and W. Lukosz, "Embossing technique for fabricating surface relief gratings on hard oxide waveguides", Appl. Opt. 25, 1499-1504 (1986).
  • 8. K. Tiefenthaler and W. Lukosz, "Integrated optical switches and gas sensors", Optics Lett. 10, 137-139 (1984).
  • 9. K. Tiefenthaler and W. Lukosz, "Grating couplers as integrated optical humidity and gas sensors", Thin Solid Films 126, 205-211 (1985).
  • 10. R.E. Kunz, "Gradient effective index waveguide sensors", Sensors Actuators B11, 167-176 (1993).
  • 11. R.E. Kunz, J. Dubendorfer, and R.H. Morf, "Finite grating depth effects for integrated optical sensors with high sensitivity", Bios. Bioelectronics 11, 653-667 (1996).
  • 12. M. Wiki, H. Gao, M. Juvet, and R.E. Kunz, "Compact integrated optical sensor system", Biosensors Bioelectronics 16, 37-45 (2001).
  • 13. P. Karasiński, "Dielectric layers SiO2:TiO2 produced using the sol-gel technology for the application in planar sensors", Proc. SPIE 5576, 176-180 (2004).
  • 14. P. Karasiński, "Sol-gel derived optical waveguide films for planar sensors with phase modulation", Opt. Appl. 34, 467-475 (2004).
  • 15. C.J. Brinker and G.W. Scherer, "Sol-gel Science", Academic Press, Inc. San Diego (1990).
  • 16. I. Strawbridge and P.F. James, "The factors affecting the thickness of sol-gel derived silica coatings prepared by dipping", J. Non-Cryst. Solids 86, 381-393 (1986).
  • 17. C.J. Brinker, G.C. Frye, A.J. Hurd, and C.S. Ashley, "Fundamentals of sol-gel dip coating", Thin Solid Films 201, 97-108 (1991).
  • 18. P. Karasiński, "Influence of technological parameters on the properties of sol-gel silica films", Opt. Appl. 35, 117-128 (2005).
  • 19. I. Szendrö, "Art and practice to emboss gratings into sol-gel waveguides", Proc. SPIE 4284, 80-87 (2001).
  • 20. D.W. Berreman, "Optics in stratified and anisotropic media: 44 matrix formulation", J. Opt. Soc. Am. 62, 502-510 (1972).
  • 21. M.O. Vassell, "Structure of optical guided modes in planar multilayers of optical anisotropic material", J. Opt. Soc. Amer. 64, 166-173 (1974).
  • 22. P. Karasiński, "Application of 4x4 matrix method for the modelling of planar waveguide sensors", Proc. SPIE 4239, 229-234 (2000).
  • 23. A. Walczak, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and P. Marciniak, "Tuned liguid crystalline interferometer analysis by means of generalised Berreman matrix", Opto-Electron. Rev. 10, 69-73 (2002).
  • 24. I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary bioaxial layered media", J. Opt. A:Pure Appl. Opt. 1, 646-653 (1999).
  • 25. I. Abdulhalim, "Anisotropic layers in waveguides for mode tuning and tunable filtering", Proc. SPIE 6135, 179-188 (2006).
  • 26. S. Stallinga, "Berreman 44 matrixmethod for reflective liquid crystal displays", J. Appl. Phys. 85, 3023-3031 (1999)
  • 27. T.R. Woliński, A. Jarmolik, and W.J. Bock, "Development of fiber optic liquid crystal sensor for pressure measurement", IEEE Trans. Instrum. Meas. 48, 2-6 (1999).
  • 28. M. Becchi and P. Galatola, "Berreman-matrix formulation of light propagation in stratified anisotropic chiral media", Eur. Phys. J. B8, 399-404 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0012-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.