PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exciton localization behaviour in different well width undoped GaN/Al₀.₀₇Ga₀.₉₃N nanostructures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report results from optical spectroscopy such as photoluminescence (PL) and time resolved photo-luminescence (TRPL) techniques from different well width MOCVD grown GaN/Al₀.₀₇Ga₀.₉₃N MQW samples. There is evidence of localization at low temperature in all samples. The decay time of all samples becomes non-exponential when the detection energy is increased with respect to the peak of the emission. Localization of carriers (excitons) is demonstrated by the "S-shape" dependences of the PL peak energies on the temperature. The time-resolved PL spectra of the 3-nm well multi quantum wells reveal that the spectral peak position shifts toward lower energies as the decay time increases and becomes red-shifted at longer decay times. There is a gradient in the PL decay time across the emission peak profile, so that the PL process at low temperatures is a free electron-localized hole transition.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
  • Departament of Physics, Islamic Azad University, Shahrood Branch, Shahrood, Iran, saboonim@walla.com
Bibliografia
  • 1. S.C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, "III -nitrides: Growth, characterization, and properties", J. Appl. Phys. 87, 965 (2000).
  • 2. S. Nakamura, "InGaN-based multi-quantum-well-structure laser diodes", Jpn. J. Appl. Phys. 35, L74 (1996).
  • 3. M. Gallart, A. Morel, T. Taliercio, P. Lefebvre, B. Gil, and J. Allegre, "Scale effect on exciton localization and nonradiative processes in GaN/AlGaN quantum wells", Phys. Stat. Sol.(a) 180, 127 (2000).
  • 4. M. Esmaeili, H. Haratizadeh, B. Monemar, P.P. Paskov, P.O. Holtz, P. Bergman, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Photoluminescence study of MOCVD - grown GaN/AlGaN MQW nanostructures: influence of Al composition and Si doping", Nanotechnology 17, 1-6 (2006).
  • 5. A. Hangleiter, J.S. Im, H. Kollmer, S. Hepple, J. Off, and F. Scholz, "The role of piezoelectric fields in GaN - based quantum wells", MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).
  • 6. I.S. Im, H. Kollmer, J. Off, J. Sohmer, F. Scholz, and A. Hangleiter, "Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells", Phys. Rev. B57, R9435(1998).
  • 7. P. Lefebvre, J. Allegre, B. Gil, H. Mathieu, P. Bigenwald, and N. Grandjean, "Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells", Phys. Rev. B59, 15363 (1999) and references cited there in.
  • 8. M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, "Quantum confined stark effect due to built-in internal polarization fields in (Al, Ga)N/GaN quantum wells", Phys. Rev. B58, R13371 (1998).
  • 9. A. Bykhovski, B. Gelmont, and M. Shur, "Pyroelectricity in gallium nitride thin films", Appl. Phys. Lett. 63, 2243 (1993).
  • 10. F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides", Phys. Rev. B56, RIO 024 (1997).
  • 11. H. Haratizadeh, B. Monemar, P.P. Paskov, P.O. Holtz, G. Pozina, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, "Time resolved photoluminescence study of Si modulation doped GaN/Al0.07Ga0.93N multiple quantum wells", Phys. Stat. Sol. (b) 241, 1124-1133 (2004).
  • 12. A. Reale, G. Massari, A. Di Carlo, P. Lugli, A. Vinattieri, D. Alderighi, M. Colocci, F. Semond, N. Grandjean, and J. Massies, "Polarization field effects on the recombination dynamics in low-in-content InGaN multi-quantum wells", J. Appl. Phys. 93, 400 (2003).
  • 13. K.C. Zeng, J.Y. Lin, H.X. Jiang, A. Salvador, G. Popovici, H. Tang, W. Kim, and H. Morkoc, "Achieving highly conductive AlGaN alloys with high Al contents", Appl. Phys. Lett. 71, 1368 (1997).
  • 14. C.Weisbuch, R. Dingle, A.C. Gossard, and W. Wiegmann, "Optical characterization of interface disorder in GaAs-Ga1-xAlxAS multi - quantum well structures", Solid State Commun. 38, 709 (1981).
  • 15. M.A. Herman, D. Bimberg, and J. Christen, "Optical diagnostics for thin film processing", J. Appl. Phys. 70, 704-709 (1991).
  • 16. J. Singh and K.K. Bajaj, "Role of interface roughness and alloy disorder in photoluminescence in quantum well structures", J. Appl. Phys. 57, 5433-5437 (1985).
  • 17. B. Monemar, H. Haratizadeh, P. Paskov, G. Pozina, P.O. Holtz, P. Bergman, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, Influence of polarization fields and depletion fields on photoluminescence of AlGaN/GaN multiple quantum well structures, Phys. Stat. Sol. (b) 237, 353 (2003)
  • 18. M. Gallart, M. Morel, T. Taliercio, B. Gil, J. Allegre, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies, "Reduction of carrier in-plane mobility in group-III nitride based quantum wells: the role of internal electric fields", Phys. Stat. Sol. (a) 183, 61 (2001).
  • 19. P. Paskov, P.O. Holtz, B. Monemar, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, "Phonon-assisted photoluminescence in InGaN/GaN multiple quantum wells", Phys. Stat. Sol. (b) 234, 755 (2002).
  • 20. Y.P. Varshni, "Temperature dependence of the energy gap in semiconductors", Physics 34, 149 (1967).
  • 21. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, "Gas source molecular beam intensities in undoped and doped GaN", J. Appl. Phys. 86, 3721 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0012-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.