Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Sequential process of atomic layer epitaxy under the conditions of gas flow and high vacuum
Konferencja
II Kongres Towarzystwa Próżniowego ; 13-17.05.2001 ; Warszawa, Polska
Języki publikacji
Abstrakty
Essential features of atomic layer epitaxy (ALE) are reviewed with particular attention being paid to the growth of monocrystalline films under the gas flow conditions. The sequential supply of chemical reactants (so-called precursors) - separated by purging phases - causes the basic effect: an introduced precursor finds a reaction partner exclusively in the adsorption layer. Consequently, the process can be considered as deposition (or epitaxy if monocrystalline film is obtained) from adsorption layers. The kind of surrounding medium plays a secondary role by delivering the precursors and removing the reaction by-products. Owing to the surface tension in the adsorbed layers, the produced solid films are smoother than those obtained by alternative procedures. ALE may be achieved in the gas flow system (ALE-GF), as well as a mode of molecular beam epitaxy (ALE-MBE). The differences for applications between the two result from the molecular and continuum flows — shadowing is easier in the high vacuum, while the gas environment gives better possibilities to produce continuous films of uniform thickness in grooves or on irregularly shaped substrates. The basic phenomena of ALE-GF are related to those appearing in the heterogeneous catalysis, but the considered deposition creates a solid phase product, and sequential control over the process is applied. Low costs and easy employment of different reactions -synthesis, single or double exchange - increase the attractiveness of sequential deposition in gas flow. Until now largescale use of the sequential procedure has been developed in production of microcrystalline films (also called in this case atomic layer deposition ALD) for colour displays, chemical catalysts as well as insulating and anticorrosion coatings. The expansion of the sequential processing ALE in the gas flow version seems to be still limited to a few geographic regions: Finland, the motherland of the method, remains the leader in the deposition of microcrystalline films - also in cooperation with a few US and European companies and research centres. The USA maintain the leadership in monocrystalline til—V films, although a few East-Asian countries (Japan, especially) joined quickly and, in addition, initiated the growth of monocrystalline II-VI semiconductor films. Research in the latter direction is also progressing in Poland, where monocrystalline films of zinc and cadmium sulphides and selenides have been obtained, and also production of microcrystalline ZnO-buffers for GaN deposition is being developed.
Wydawca
Rocznik
Tom
Strony
20--22
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
Bibliografia
- [1] T. Suntola, J. Antson: Patent US 4048430 (1977).
- [2] A. Doi, Y. Aoyagi, S. Namba: Appl. Phys. Lett. 48 (1986) 1787.
- [3] M. Godlewski et al.: Appl. Phys. Lett. 72 (1998) 1104.
- [4] S. Hirose et al.: Appl. Phys. Lett. 74 (1999) 964.
- [5] M. Godlewski, M. Leske: CRC Critical Reviews in Solid State and Materials Sciences 19 (1994) 199.
- [6] M. Ritala, M. Leskel Atomic Layer Deposition, in Handbook of Thin Film Materials Ed. H. S. Nalva Vol. 1 Ch. 2 - Academic Press, San Diego 2001 - in press.
- [7] M. A. Herman: Vacuum, 42 (1991) 61.
- [8] A. Szczerbakow et al.: J. Crystal Growth 216 (2000) 532.
- [9] Y. lde et al.: Appl. Phys. Lett. 53 (1988) 2314.
- [10] T. Suntola: Handbook of Crystal Growth (1994) 3 - Thin Fiims and Epitaxy - Part B: Growth Mechanism and Dynamics, Chapter 14, 601-663.
- [11] M. Godlewski et al.: 3rd Polish-French Symposium on Vacuum Science, Technology and Applications, May 18-19, 2000, Warsaw, Poland, Elektronika No. 11 (2000) 49.
- [12] K. S. A. Butcher et al.: Conference on Optoelectronic and Microelectronic Materials and Devices COMMAD 2000, 6-8 Dec. 2000, Melbourne, Australia. IEEE Conf. Proceeding - in press.
- [13] M. Pessa, P. Huttunen. M. A. Herman: J. Appl. Phys. 54 (1983) 6047.
- [14] M. A. Herman, O. Jylha, M. Pessa: J. Crystal Growth 66 (1984) 480.
- [15] S. M. Bedair et al.: Appl. Phys. Lett. 47 (1985) 51.
- [16] M. A.Tischler, S. M. Bedair. Appl. Phys. Lett. 49 (1986) 274.
- [17] M. A. Khan et al.: Appl. Phys. Lett. 60 (1992) 1366.
- [18] A. Koukitu et al.: Jpn. J. Appl. Phys. Lett. 29 (1990) L2165.
- [19] A. Koukitu et al.: Jpn. J. Appl. Phys. Lett. 31 (1992)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0003-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.