PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contrast sensitive fiber optic Michelson interferometer as elongation sensor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Theoretical description of a contrast phenomenon in an unbalanced fiber optic Michelson’s interferometer with a multimode laser is shown. Required characteristic features of the contrast function for an elongation sensor are determined. Optimal spectrum for the dislocation sensor is calculated theoretically. A laser which parameters fulfilled the requirements was found. The elongation sensor based on contrast oscillations in an unbalanced fiber optic Michelson interferometer with a 3x3 coupler is described. Direct contrast-sensitive elongation measurement range limited to 200-µm long slope is expanded up to 5 mm by means of contrast oscillations linearization scheme. Elongation modulator in a reference arm of the interferometer is used. Experimental setup, signal processing scheme and software were worked out. For 1-m long sensor, the 5-mm measuring range with 28-µm uncertainty was obtained.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • 1. B. Mason and T. Valis, “Commercialisation of fiber-optic strain gauge systems”, Proc. SPIE 1795, 215–222 (1992).
  • 2. V. Vohra, “Fiber Bragg grating sensor for civil structure monitoring”, Proc. 13th Conf. Optical Fiber Sensors, 32–42 (1996).
  • 3. S. Lloret, D. Inaudi, and S. Vurppillot, “Static and dynamic monitoring with fiber optic sensors”, Proc. SPIE 3555, 136–146 (1998).
  • 4. B. Lee, “Review of the present status of optical fiber sensors”, Optical Fiber Technology 9, 57–79 (2003).
  • 5. J. Bush and A. Cekorich, “Commercialisation of interferometer interrogation techniques for fiber sensing applications”, Proc. 16th Conf. Optical Fiber Sensors, (2002).
  • 6. B. Chiu and M. Hasting, “Digital demodulation for passive homodyne optical fiber interferometry based on a 33 coupler”, Proc. SPIE 2292, 371–382 (1994).
  • 7. D. Hogg, D. Janzen, T. Valis, and R. Measures, “Development of fiber Fabry-Perot strain gauge”, Proc. SPIE 1588, 300–307 (1991).
  • 8. B. Culshaw and J. Dakin, Optical Fiber Sensors, Artech House, Boston, 1989.
  • 9. J. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fiber under elastic deformation”, IEEE J. Quantum Electron. 17, 1041–1056 (1981).
  • 10. J.W. Goodmann, Statistical Optics, John Wiley & Sons, London, 1988.
  • 11. M. Szustakowski and N. Palka, “Novel fiber optic contrast-based sensor”, Proc. SPIE 5272 (2003).
  • 12. M. Chojnacki and N. Palka, “Demodulation of output signals from unbalanced fibre optic Michelson’s interferometer”, Proc. IEEE TCSET, Modern Problems of Radio Engineering, Telecommunications and Computer Science, Slavsk, 249–250 (2002).
  • 13. W. Demtroder, Laser Spectroscopy. Basic Concepts and Instrumentation, Springer-Verlag, Berlin, 1988.
  • 14. M. Szustakowski, N. Palka, and W. Ciurapiñski, “Simulations and experimental research of fiber optic contrast-based dislocation sensor”, Proc. SPIE 5459 (2004). (in print).
  • 15. Guide to the Expression of Uncertainty in Measurement, International Organization for Standardization, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0015-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.