PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extended wedgelets : geometrical wavelets in efficient image coding

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the modern world, image coding, and especially image compression, plays a very important role. There are well known and recognized theories concerning this topic, such as, for example, Fourier and wavelets theories. Both of these theories allow for representation of images in a sparse way. Unfortunately wavelets, though very good in catching point discontinuities, cannot properly catch line discontinuities often present in images, that is, edges. As a remedy for this problem, the new theory of geometrical wavelets has arisen. In the paper we present a new and fashionable, hence well known, theory of geometrical wavelets called wedgelets, which allows us to code images with edges in a very efficient way. Moreover, we present the new improvement in the wedgelets theory. This improvement - the theory of extended wedgelets - allows us to represent images in a more sparse and efficient way than in the case of the known wedgelets. Such representation allows us to get a higher compression ratio, together with better visual effects. Furthermore, the application to image coding is also presented. The performance of the improvement has been confirmed both theoretically and experimentally.
Rocznik
Strony
261--273
Opis fizyczny
Bibliogr. 22 poz., il.
Twórcy
autor
Bibliografia
  • [1] Haar A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69, 331-371, 1910.
  • [2] Phillips G.M.: Theory and applications of numerical analysis. Academic Press, New York, 1973.
  • [3] Ahmed N., Rao K.R.: Orthogonal Transforms for Digital Signal Processing. Springer-Verlag, Berlin, 1975.
  • [4] Daubechies I.: Ten lectures on wavelets. Philadelphia, PA, SIAM, 1992.
  • [5] Fournier A.: Wavelets and their Applications in Computer Graphics. Siggraph '95 Course Notes, University of British Columbia, 1995.
  • [6] Kaiser P.K.: The Joy of Visual Perception. http://www.yorku.ca/eye/thejoy.htm, 1996.
  • [7] Walker J.S.: Fourier Analysis and Wavelet Analysis. Notices of the American Mathematical Society, 44(6), 658-670, 1997.
  • [8] Candès E.: Ridgelets: Theory and Applications. Ph.D. Thesis, Departament of Statistics, Stanford University, 1998.
  • [9] Candès E., Donoho D.L.: Curvelets - A Surprisingly Effective Nonadaptive Representation For Objects with Edges. Curves and Surfaces Fitting, A. Cohen, C. Rabut, and L.L. Schumaker, Eds. Saint-Malo: Vanderbilt University Press, 1999.
  • [10] Donoho D. L.: Wedgelets: Nearly-minimax estimation of edges. Annals of Statistics, 27, 859-897, 1999.
  • [11] Christopoulos C., Skodras A., Ebrahimi T.: The JPEG2000 Still Image Coding System: an Overview. IEEE Transactions on Consumer Electronics, 46(4), 1103-1127, 2000.
  • [12] Fernandes F., van Spaendonck R., Burrus C.: Directional Complex-Wavelet Processing. Wavelet Applications in Signal and Image Processing, August, 2000.
  • [13] Do M.N.: Directional Multiresolution Image Representations. Ph.D. Thesis, Department of Communication Systems, Swiss Federal Institute of Technology, Lausanne, 2001.
  • [14] Donoho D. L., Huo X.: Beamlets and Multiscale Image Analysis. Lecture Notes in Computational Science and Engineering, Multiscale and Multiresolution Methods, Springer, 2001.
  • [15] Resnikoff H., Wells R.O. Jr: Wavelet Analysis. Springer-Verlag, New York, 2002.
  • [16] Wakin M., Romberg J., Choi H., Baraniuk R.: Image Compression using an Efficient Edge Cartoon + Texture Model. Data Compression Conference, pp. 43-52, USA, April, 2002.
  • [17] Wakin M., Romberg J., Choi H., Baraniuk R.: Geometric Tools for Image Compression. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, November, 2002.
  • [18] Candès E.: What is a Curvelet?. Notices of the American Mathematical Society, 50(11), 1402-1403, 2003.
  • [19] Lisowska A.: Nonlinear Weighted Median Filters in Dyadic Decomposition of Images. Annales UMCS Informatica AI, 1, 157-164, 2003.
  • [20] Prieto M. S., Allen A. R.: A Similarity Metric for Edge Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1265-1273, 2003.
  • [21] Romberg J., Wakin M., Baraniuk R.: Multiscale Geometric Image Processing. SPIE Visual Communications and Image Processing, Lugano, Switzerland, July, 2003.
  • [22] Romberg J., Wakin M., Baraniuk R.: Approximation and Compression of Piecewise Smooth Images Using a Wavelet/Wedgelet Geometric Model. IEEE International Conference on Image Processing, USA, September, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0014-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.