PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A robust technique for surface reconstruction from orthogonal slices

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of surface reconstruction from sets of planar slices representing cross sections through 3D objects is presented. The final result of surface reconstruction is always based on the correct estimation of the structure of the original object and on the visual quality of the resultant surface. This paper is a case study of the structure reconstruction and the surface formation problems. We present a new approach, which is based on considering mutually orthogonal sets of slices. A new method for surface reconstruction from orthogonal slices is described, and the benefit of orthogonal slices is also discussed. The properties and sample results are presented as well. Key words: surface reconstruction, orthogonal slices, orthogonal cross-sections, contour correspondence.
Rocznik
Strony
221--233
Opis fizyczny
Bibliogr. 18 poz., il.
Twórcy
autor
  • Department of Computer Science and Engineering University of West Bohemia, Plazen, Czech Republic
autor
  • Department of Computer Science and Engineering University of West Bohemia, Plazen, Czech Republic
Bibliografia
  • [1] Soroka B. I.: Understanding Objects From Slices: Extracting Generalised Cylinder Descriptions From Serial Sections. PhD thesis, University of Kansas Dept of Computer Science, March. TR-79-1, 1979.
  • [2] Soroka B. I.: Generalized cones from serial sections. Computer Graphics and Image Processing, (15), 54-166, 1981.
  • [3] Bresler Y., Fessler J. A., Macovski, A.: A Bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain. IEEE Trans. PAMI., 11(8), 840-858, August, 1989.
  • [4] Foley J. D., van Dam A., Feiner S. K., Hughes J. F.: Computer Graphics: Principles and Practice. Addison-Wesley, 1990.
  • [5] Shinagawa Y., Kunii T. L.: Constructing a Reeb graph automatically from cross sections. IEEE Comuter Graphics and Applications, 11(6), 44-51, November, 1991.
  • [6] Shinagawa Y., Kunii T. L., Kergosien Y. L.: Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11(5), 66-78, September, 1991.
  • [7] Skinner S. M.: The correspondence problem: Reconstruction of objects from contours in parallel sections. Master's thesis, Department of Computer Science and Engineering, University of Washington, 1991.
  • [8] Jones M., Chen M.: A new approach to the construction of surfaces from contour data. Computer Graphics Forum (13): 75-84, 1994.
  • [9] Meyers D.: Multiresolution tiling. Proc. Graphics Interface '94, Banff, Alberta, May, 25-32, 1994.
  • [10] Meyers D.: Reconstruction of Surfaces From Planar Contours. PhD thesis, University of Washington, 1994.
  • [11] Galin E., Akkouche S.: Fast Surface Reconstruction from Contours using Implicit Surfaces. Implicit Surfaces'98 Conf., Seattle, USA, June, 3: 139-144, 1998.
  • [12] Klein R., Schilling A.: Fast Distance Interpolation for Reconstruction of Surfaces from Contours. Proc. of Eurographics '99, Short Papers and Demos, September, 1999.
  • [13] Treece G. M., Prager R. W., Gee A. H., Berman L.: Fast surface and volume estimation from non-parallel cross-sections, for freehand 3-D ultrasound. Medical Image Analysis, 3(2), 141-173, 1999.
  • [14] Cong G., Parvin B.: Robust and efficient surface reconstruction from contours. The Visual Computer, (17), 199-208, 2001.
  • [15] Nonato L., Minghim R., Oliveira M. C. F., Tavares G.: A Novel Approach for Delaunay 3D Reconstruction with a Comparative Analysis in the Light of Applications. Comput. Graph. Forum 20(2): 161-174, 2001.
  • [16] Biasotti S., Falcidieno B., Spagnuolo M.: Shape abstraction using computational topology techniques. From Geometric Modeling to Shape Modeling, Kluwer Academic Publishers, 209-222, 2002. 2002
  • [17] Svitak R., Skala V.: Surface Reconstruction from Orthogonal Slices, ICCVG 2002, Zakopane, Poland, 2002.
  • [18] Wood Z. J.: Computational Topology Algorithms For Discrete 2-Manifolds. California Institute of Techology, PhD Thesis, May, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0014-0082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.