Metoda przeliczania 2-optymalnych struktur opiniowania diagnostycznego typu BGM

Roman KULESZA

Zakład Automatyki, Instytut Teleinformatyki i Automatyki WAT, ul. Kaliskiego 2, 00-908 Warszawa

STRESZCZENIE: Artykuł jest kontynuacją artykułu [9]. Zaproponowano w nim metodę przeliczenia 2-optymalnych struktur opiniowania diagnostycznego (struktur OD) typu BGM (Barsi F., Grandoni F., Maestrini P [1]), które nie są silnie spójne i wyznaczono szereg przeliczający takie struktury do rzędu ósmego. Przypomniano też podstawowe własności 2-optymalnych struktur OD typu BGM oraz określono ich kanoniczne reprezentanty klas i podklas podobieństwa.

1. Wprowadzenie

Artykuł niniejszy jest kontynuacją artykułu [9]. Używa się w nim pojęć i symboli stosowanych w artykułach [6] – [9].

Celem artykułu [9] było wybranie kanonicznych reprezentantów klas podobieństwa niesilnie spójnych oraz silnie spójnych optymalnych struktur OD (zarówno typu PMC jak i BGM) oraz określenie liczebności zbiorów takich reprezentantów dla $m \le 4$ i $k \le 8$, a także przedstawienie sposobu wykrywania (redukowania) struktur podobnych (izomorficznych) w klasie struktur silnie spójnych.

Celem niniejszego artykułu jest zaproponowanie metody komputerowo wspomaganego przeliczania 2-optymalnych niesilnie spójnych struktur OD typu BGM i wyznaczenie ich szeregu przeliczającego (do rzędu ósmego) dla przypadku, gdy składowa silnej spójności takich struktur jest rzędu czwartego (część trzecia artykułu).

W części drugiej artykułu przypomniano podstawowe właściwości 2-optymalnych struktur OD typu BGM oraz wyznaczono kanoniczne reprezentanty klas i podklas podobieństwa takich niesilnie spójnych struktur.

2. Sformułowanie problemu

Wiadomo [9], że 2-optymalna struktura OD typu BGM rzędu czwartego ma postać jednej z dwóch struktur przedstawionych na rys. 1 oraz jest strukturą silnie spójną.

Rys. 1. Struktury OD typu BGM, 2-optymalne rzędu czwartego

Zauważmy, że struktura G_1 (rys.1), w przeciwieństwie do struktury G_2 , nie ma trywialnej grupy węzłowej (trywialnego zbioru przekształceń automorficznych).

Niech $\mathbb{S}_2^B(k)$ oraz $\mathbb{S}_2^B(k|G)$, k > 4, oznacza (odpowiednio) zbiór 2-optymalnych struktur OD typu BGM rzędu k oraz taki podzbiór struktur tego zbioru, których składową silnej spójności jest struktura $G \in \{G_1, G_2\}$. Mówimy, że struktura G indukuje zbiór $\mathbb{S}_2^B(k|G)$.

Struktura $S' \in \mathbb{S}_2^B(k \mid G)$ jest takim nadgrafem grafu G, którego każdy podgraf, utworzony przez usunięcie węzła bez następników, jest 2-optymalną strukturą OD typu BGM, rzędu k-1 (rys. 2).

Cechy nadgrafu S' (rys. 2), takie jak: warstwa S', przedłużenie $\psi(S')$, ślad S' w G, kanoniczny reprezentant klasy podobieństwa $\varphi(S')$ oraz charakterystyka warstwy q(S'), są (formalnie) opisane w pracy [9].

Podobieństwo struktur indukowanych przez strukturę G zależy zarówno od jej grupy węzłowej, jak i od cech nadgrafu S'. Celem artykułu jest zaproponowanie metody określającej taką zależność oraz wyznaczenie szeregu przeliczającego 2-optymalne struktury OD typu BGM do rzędu ósmego dla przypadku, gdy składowa silnej spójności takich struktur jest rzędu czwartego.

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Rys. 2. Struktura S' $(S' \in \mathbb{S}_2^{\mathbb{B}}(8|G_1))$ jest takim nadgrafem grafu G_1 , że $\varphi(S') = (1,2)$ oraz $q(S') = \{2/1, 2/0, 1/0\}$

3. Metoda przeliczania 2-optymalnych niesilnie spójnych struktur OD typu BGM

Taki wektor $\varphi(S) = (\varphi_1, \varphi_2)$, gdzie $\varphi_2 \ge 1$, $\varphi_1 + \varphi_2 \le k - 4$, że : $|| \{ e \in E(S') \setminus E(G) : || \Gamma_{S'}^{-1}(e) \cap E(G) || = p \} || = \varphi_p, \ 1 \le p \le 2,$ jest kanonicznym reprezentantem klasy podobieństwa struktury $S \in \mathbb{S}_2^B(k), \ k > 4.$

Zbiory Φ_2^{k-4} ($\varphi \in \Phi_2^{k-4}, 5 \le k \le 8$), mają postać [9]:

$$\begin{split} \Phi_2^1 &= \{(0,1)\}; \\ \Phi_2^2 &= \{(0,2),(1,1)\}; \\ \Phi_2^3 &= \{(0,3),(0,2),(1,2),(1,1),(2,1)\}; \\ \Phi_2^4 &= \{(0,4),(0,3),(0,2),(1,3),(1,2),(1,1),(2,2),(2,1),(3,1)\}. \end{split}$$

Nie będziemy rozpatrywać metod generowania zbiorów $\mathbb{Q}(\varphi)$ charakterystyk warstwy $q \in \mathbb{Q}(\varphi)$ oraz zbiorów $\Psi_2(q, k-4)$ przedłużeń $\psi \in \Psi_2(q, k-4)$, bowiem dla $k \le 8$ są one oczywiste.

Zbiory $\mathbb{Q}(\varphi)$, gdzie $\varphi \in \Phi_2^a$, $a \le 4$, podano w tabeli 1, a liczebności zbiorów $\Psi_2(q, k-4)$ są następujące:

$$\begin{split} \|\Psi_{2}(\{2/0,2/1,1/0\},1)\| = \|\Psi_{2}(\{2/1,1/1,1/0\},1)\| = \\ = \|\Psi_{2}(\{2/1,1/0\},2)\| = 3 \\ \|\Psi_{2}(\{2/2,1/0,1/0\},1)\| = \|\Psi_{2}(\{2/0,2/0\},2)\| = 2, \end{split}$$
przy czym dla pozostałych przypadków $\|\Psi_{2}(q,k-4\| = 1.)$

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

φ	$\mathbb{Q}(arphi)$
(0,1)	$\{2/0\}$
(0,2)	$\{2/0,2/0\}$
(0,3)	$\{2/0, 2/0, 2/0\}$
(0,4)	$\{2/0, 2/0, 2/0, 2/0\}$
(1,1)	$\{2/1, 1/0\}$
(1,2)	$\{2/0, 2/1, 1/0\}$
(1,3)	{2/0,2/0,2/1,1/0}
(2,1)	$\{2/2, 1/0, 1/0\}; \{2/1, 1/1, 1/0\}$
(2,2)	$\{2/1, 2/1, 1/0, 1/0\}; \{2/0, 2/1, 1/1, 1/0\}; \{2/0, 2/2, 1/0, 1/0\}$
(3,1)	$\{2/1, 1/1, 1/1, 1/0\}; \{2/2, 1/1, 1/0, 1/0\}; \{2/1, 1/2, 1/0, 1/0\}; \{2/3, 1/0, 1/0, 1/0\}$

Tabela 1. Zbiory charakterystyk warstwy nadgrafu dla określonego $\varphi \in \Phi_2^a, a \le 4$

Dla przykładu: na rys.3 przedstawiono przedłużenia zbioru $\Psi_2(\{2/2,1/0,1/0\},1)$ oraz zbioru $\Psi_2(\{2/1,1/1,1/0\},1)$.

Rys. 3. Przedłużenia a) - zbioru $\Psi_2(\{2/2, 1/0, 1/0\}, 1)$ oraz b) - zbioru $\Psi_2(\{2/1, 1/1, 1/0\}, 1)$

Zauważmy, że dla $k \le 8$ liczba takich węzłów przedłużenia ψ , które nie są elementami warstwy, nie jest większa od dwóch oraz że każdy z takich węzłów ma poprzednik w warstwie. Tak więc dla k > ||q|| + 4 przedłużenie można jednoznacznie (do izomorfizmu) opisać, przypisując każdemu elementowi $e \in E(q)$ warstwy, o charakterystyce q, liczbę następników poza warstwą ($\psi' = \{<(2/2), 1>; <(1/0), 1>; <(1/0), 0>\}$ – rys. 3a).

Niech $\overline{G}(r,w), 1 \le r \le 6, r \le w$, oznacza zbiór takich grafów $G \in \{G_1, G_2\}$ (rys. 1) o r ważonych gałęziach, że suma wag gałęzi równa się w, przy czym $w \in \{1, 2, ...\}$, a $\Gamma(G)$ – grupę węzłową (zbiór przekształceń automorficznych) grafu G.

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Oznaczmy:

$$\overline{G}_{1}(r,w|s) = \{G \in \overline{G}_{1}(r,w) : \|\Gamma(G)\| = s\} (1 \le s \le \|\Gamma(G_{1})\|).$$

(r,w)	S			
	1	2	3	4
(1, W)	1	1	0	0
(2,2)	3	1	0	1
(2,3)	7	1	0	0
(2,4)	10	2	0	1
(3,3)	4	2	0	0
(3,4)	14	2	0	0
(4,4)	3	1	0	1

Tabela 2. Wartości $\|\overline{G}_1(r,w|s)\|$

W tabeli 2 podano wartości $\|\overline{G}_1(r,w|s)\|$, $w \le 4$. Określenie tych wartości, drogą analityczną, jest kłopotliwe (z uwagi na postać grupy węzłowej grafu G_1). Dokonano tego generując zbiory $\overline{G}_1(r,w)$, $1 \le r \le 4$, $w \le 4$, to jest – indukując zbiór $\overline{G}_1(r+1,r+1)$ ze zbioru $\overline{G}_1(r,r)$ (przez dodanie gałęzi ważonej) oraz zbiór $\overline{G}_1(r,w+1)$ ze zbioru $\overline{G}_1(r,w)$ (przez zwiększenie wagi (dowolnej) gałęzi ważonej), redukując rozwiązania podobne i (ewentualnie) określając grupę węzłową każdego uzyskanego (w ten sposób) grafu (rys. 4). Oczywiście zbiór $\overline{G}_1(1,1)$ ma dwa grafy – jeden o ważonym łuku i jeden o ważonej krawędzi.

Pominiemy dla zbiorów $\overline{G}_1(r, w)$ rozważania analityczne. Zauważmy tylko, że:

$$\begin{aligned} \| \,\overline{G}_{1}(2,3) \| &= 2 \cdot \| \,\overline{G}_{1}(2,2) \| - \| \{ G' \in \overline{G}_{1}(2,2) :\| \,\Gamma(G') \| \neq 1 \} \|; \\ \| \,\overline{G}_{1}(2,4) \| &= \| \,\overline{G}_{1}(2,2) \| + \| \,\overline{G}_{1}(2,3) \|; \\ \| \,\overline{G}_{1}(3,4) \| &= 3 \cdot \| \,\overline{G}_{1}(3,3) \| - \| \{ G' \in \overline{G}_{1}(3,3) :\| \,\Gamma(G') \| \neq 1 \} \|. \end{aligned}$$

Dla przykładu na rys. 4 zilustrowano podobieństwo grafów i wartość grupy węzłowej grafu – grafy G' i G'' są izomorficzne (permutacja (5)(6)(13)(24) przekształca G' w G''), a $||\Gamma(G''')|| = 2$, bowiem permutacje (1)(2)(3)(4)(5)(6) oraz (5)(6)(13)(24) przekształcają G''' w samego siebie.

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Rys. 4. Przykłady grafów zbioru $\overline{G}_1(4,4)$ (krotność linii (ciąglej) symbolizuje wagę galęzi)

Ponieważ graf G_2 jest grafem węzłowo asymetrycznym, to

$$\|\overline{G}_{2}(r,w)\| = \binom{6}{r} \cdot \sum_{\lambda \in \Lambda^{r}(w)} P(\lambda), \qquad (1)$$

gdzie $P(\lambda)$ oznacza liczbę kombinacji ciągu $\lambda = (\lambda_1, ..., \lambda_r)$, a $\Lambda^r(w)$ – zbiór podziałów liczby naturalnej w na r składników prostych. Wiadomo, że $P(\lambda) = (\mu_1(\lambda) + \dots + \mu_{p(\lambda)}(\lambda))! \cdot (\mu_1(\lambda)! \cdot \dots \cdot \mu_{p(\lambda)}(\lambda)!)^{-1}$, gdzie $(\mu_1(\lambda), ..., \mu_{p(\lambda)}(\lambda))$, $1 \le p(\lambda) \le r$ jest ciągiem krotności multizbioru $\{\lambda_1, ..., \lambda_r\}$.

Niech $\mathbb{S}_2^B(k | \varphi, q, G)$ oznacza zbiór 2-optymalnych struktur OD typu BGM rzędu $k \ge 5$, których kanonicznym reprezentantem klasy podobieństwa, jest wektor φ , charakterystyką warstwy – zbiór q, a składową silnej spójności – graf $G \in \{G_1, G_2\}$ (rys. 1). Jeżeli $||\mathbb{Q}(\varphi)|| = 1$ (odwzorowanie $\varphi \rightarrow q$ jest wzajemnie jednoznaczne), to będziemy, dla uproszczenia, pisać $\mathbb{S}_2^B(k | \varphi, \bullet, G)$ lub $\mathbb{S}_2^B(k | \bullet, q, G)$.

Ślad nadgrafu $S' \in \mathbb{S}_2^B(4 + \varphi_2 | (0, \varphi_2), \bullet, G)$ jest elementem zbioru $\{G \in \overline{G}(r, w) : 1 \le r \le \varphi_2, w \le \varphi_2\}$, a więc

$$\|\mathbb{S}_{2}^{B}(4+\varphi_{2}|(0,\varphi_{2}),\bullet,G)\| = \sum_{r=1}^{\min\{6,\varphi_{2}\}} \|\bar{G}(r,\varphi_{2})\|.$$
(2)

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Niech $\overline{G}^{\bullet}(r, w; r^{\bullet}, w^{\bullet})$ oznacza zbiór takich grafów $G \in \{G_1, G_2\}$, (rys. 1) o r ważonych gałęziach i r^{\bullet} ważonych węzłach, że suma wag gałęzi równa się w, a suma wag węzłów w^{\bullet} .

(r, w)		$(r^{\bullet}, w^{\bullet})$			
	(r,w)	$(1, w^{\bullet})$	(2,2)	(2,3)	(3,3)
	(1, W)	6	10	18	6
	(2,2)	15	24	45	
	(2,3)	30	45		
	(3,3)	20			

Tabela 3. Wartości $\|\overline{G}_{1}^{\bullet}(r,w;r^{\bullet},w^{\bullet})\|$

W tabeli 3 podano wartości $\|\overline{G}_1^{\bullet}(r, w; r^{\bullet}, w^{\bullet})\|$ $(r \ge 1, r^{\bullet} \ge 1, r^{\bullet} \le 4)$ Wartości te wyznaczono indukując zbiór $\overline{G}_1^{\bullet}(r, w; r^{\bullet}, w^{\bullet})$ ze zbioru $\overline{G}_1(r, w)$ (przez dodanie r^{\bullet} węzłów ważonych o sumie wag równej w^{\bullet}) i redukując rozwiązania podobne.

Pominiemy dla zbiorów $\overline{G}_1^{\bullet}(r, w; r^{\bullet}, w^{\bullet})$ rozważania analityczne, zauważmy tylko, że:

$$\|\bar{G}_{1}^{\bullet}(r,w;1,1)\| = {\binom{4}{1}} \cdot \sum_{s=1}^{4} s^{-1} \cdot \|\bar{G}_{1}(r,w|s)\|.$$
(3)

Z asymetrii węzłowej grafu G_2 wynika, że

$$\|\overline{G}_{2}^{\bullet}(r,w;r^{\bullet},w^{\bullet})\| = \binom{6}{r} \cdot \sum_{\lambda' \in \Lambda'(w)} P(\lambda') \cdot \binom{4}{r^{\bullet}} \cdot \sum_{\lambda'' \in \Lambda'^{\bullet}(w^{\bullet})} P(\lambda'').$$
(4)

(r w)	$(r^{\bullet}, w^{\bullet})$			
(', '')	$(1, w^{\bullet})$	(2,2)	(2,3)	(3,3)
(1, W)	24	36	72	24
(2,2)	60	90	180	
(2,3)	120	180		
(3,3)	80			

Tabela 4. Wartości $\|\overline{G}_{2}^{\bullet}(r,w;r^{\bullet},w^{\bullet})\|$

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Oznaczmy:

$$\overline{G}_1^{\bullet}(r,w;r^{\bullet},w^{\bullet}|s) = \{G \in \overline{G}_1^{\bullet}(r,w;r^{\bullet},w^{\bullet}) : \|\Gamma(G)\| = s\}.$$

Zauważmy, że $(w + w^{\bullet} \le 4) \Longrightarrow (s \le 2)$.

W tabeli 5, zestawiono liczebności niektórych zbiorów $\overline{G}_1^{\bullet}(r, w; r^{\bullet}, w^{\bullet}|2)$, a na rys. 5, przedstawiono grafy tych zbiorów.

Fabela 5. $\ \bar{G}_{1}^{\bullet}(r,w;r^{\bullet},w^{\bullet} 2)\ $				
(r w)	$(r^{\bullet}, w^{\bullet})$			
(7, 10)	$(1, W^{\bullet})$	(2,2)	(3,3)	
(1, W)	0	2	2	
(2,2)	0	3		

Rys. 5. Niektóre grafy zbiorów $\overline{G}_{1}^{\bullet}(r, w; r^{\bullet}, w^{\bullet}|2)$ (orientacja łuków jest taka jak na rys.1)

Ślad nadgrafu $S' \in \mathbb{S}_2^B(4+||q|| | \varphi(q), q, G)$ jest elementem zbioru

 $\{G' \in \overline{G}^{\bullet}(r, w; r^{\bullet}, w^{\bullet}) : 1 \le r \le w \le \varphi_2(q); 1 \le r^{\bullet} \le w^{\bullet} \le \varphi_1(q)\},\$

a podobieństwo nadgrafów rzędu 4+||q||, o jednakowych śladach, zależy od cech warstwy q i grafu G' oraz od grupy węzłowej grafu G.

Wektor $(r, \varphi_2(q); r^{\bullet}, \varphi_1(q))$ możemy traktować jako kanoniczny reprezentant klasy podobieństwa nadgrafów zbioru $\mathbb{S}_2^B(4+||q|||\varphi(q), q, G)$, a więc liczebność tego zbioru – wyznaczać jako liniową kombinację wartości $||\overline{G}^{\bullet}(r, \varphi_2(q); r^{\bullet}, \varphi_1(q))||$ dla $1 \le r \le \varphi_2(q), 1 \le r^{\bullet} \le \varphi_1(q)$.

Rozpatrzmy taką warstwę q^* (rys. 6a), że

 $(\exists ! e' \in E(q^*) : q(e') = 2/1) \land (\exists ! e'' \in E(q^*) : q(e'') = 1/0) \land (\varphi_1(q^*) \le 3).$

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Ponieważ liczebność grupy węzłowej, dowolnego grafu ze zbioru $\overline{G}^{\bullet}(1,1;r^{\bullet},3)$, nie jest większa od dwóch, to

$$\|\mathbb{S}_{2}^{B}(4+\|q^{*}\| \left| \varphi(q^{*}), q^{*}, G \right)\| =$$

$$= \sum_{r^{\bullet}=1}^{\varphi_{1}(q^{*})} \sum_{\lambda \in \Lambda^{r^{\bullet}}(\varphi_{1}(q^{*}))} C(\lambda) \cdot [\|\bar{G}^{\bullet}(1, 1; r^{\bullet}, \varphi_{1}(q^{*}))\| - 2^{-1} \cdot \|\bar{G}^{\bullet}(1, 1; r^{\bullet}, \varphi_{1}(q^{*}) | 2)\|],$$
(5)

bowiem liczba ciągów, które można utworzyć z etykiet węzłów będących śladami warstwy q^* , jest równa sumie ciągów $C(\lambda)$, jakie można utworzyć z elementów każdego multizbioru o ciągu krotności równym λ . Dla przykładu $|| \mathbb{S}_2^B(8| \bullet, \{2/1, 1/1, 1/1, 1/0\}, G_1) || = 1 \cdot 6 + 3 \cdot 18 + 3! \cdot (6-1).$

Rozpatrzmy warstwę {2/1,1/2,1/0,1/0}(rys.6b). Zauważmy, że

$$\|\mathbb{S}_{2}^{B}(8|\varphi(q), \{2/1, 2/2, 1/0, 1/0\}, G)\| = \\ = \|\overline{G}^{\bullet}(1, 1; 1, 3)\| + 3 \cdot \|\overline{G}^{\bullet}(1, 1; 2, 3)\| + 2 \cdot \|\overline{G}^{\bullet}(1, 1; 3, 3)\|,$$
(6)

bowiem jeżeli węzły e' i e'' nie mają wspólnego śladu, to indukowane są po dwa (zarówno dla przypadku, gdy $r^{\bullet} = 2$, jak i dla przypadku, gdy $r^{\bullet} = 3$) nadgrafy – zależnie od tego, który z tych węzłów jest następnikiem węzła e^* .

Zauważmy (rys. 6c), że

$$\|\mathbb{S}_{2}^{B}(8|\varphi(q), \{2/2, 1/1, 1/0\}, G)\| = \|\overline{G}^{\bullet}(1, 1; 1, 3)\| + 7 \cdot \|\overline{G}^{\bullet}(1, 1; 2, 2)\| - \|\overline{G}^{\bullet}(1, 1; 2, 2|2)\|,$$
(7)

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

bowiem jeżeli $r^{\bullet} = 1$, to liczba generowanych nadgrafów jest równa liczebności zbioru $\overline{G}^{\bullet}(1,1;1,3)$, natomiast jeżeli $r^{\bullet} = 2$, to w każdym z trzech przypadków (gdy węzły e' i e''; e' i e''' albo e'' i e''' mają wspólny ślad) generowanych jest $||\overline{G}^{\bullet}(1,1;2,2)||$ nadgrafów, a w przypadku, gdy $r^{\bullet} = 3$, liczba generowanych nadgrafów równa się $(4-2) \cdot 2 \cdot ||\overline{G}^{\bullet}(1,1;2,2)|| - ||\overline{G}^{\bullet}(1,1;2,2)||$.

Łatwo zauważyć (rys. 6d), że

$$\|\mathbb{S}_{2}^{B}(5+\varphi_{1}|\bullet,\{2/\varphi_{1},1/0,...,1/0\},G)\| = \sum_{r^{\bullet}=1}^{\varphi_{1}}\|\overline{G}^{\bullet}(1,1;r^{\bullet},\varphi_{1})\|$$
(8)

Przypiszmy śladom warstwy $\{2/1, 2/1, 1/0, 1/0\}$ (rys. 7a) zarówno wagi, jak i barwy w taki sposób, że ślady przyległych węzłów warstwy, mają taką samą barwę. Teraz staje się oczywiste, że (tylko dla grafu G_1) istnieją (dokładnie) dwa ślady podobne (rys. 7b), a więc

$$\|\mathbb{S}_{2}^{B}(8 | \varphi(q), \{2/1, 2/1, 1/0, 1/0\}, G)\| =$$

$$= \|\overline{G}^{\bullet}(1, 2; 2, 2)\| + \|\overline{G}^{\bullet}(1, 2; 1, 2)\| + \|\overline{G}^{\bullet}(2, 2; 1, 2)\| +$$

$$+ 2 \cdot \|\overline{G}^{\bullet}(2, 2; 2, 2)\| - \partial(G)$$
(9)

przy czym $\partial(G_1) = 1$ oraz $\partial(G_2) = 0$.

Rys. 7. a)-warstwa $\{2/1, 2/1, 1/0, 1/0\}$; b)-ślady warstwy w grafie G_1 (jednakowe etykiety oznaczają jednakową barwę)

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Zauważmy, że jeżeli $1 \le ||q^2(q)|| < ||q||$, gdzie $q^2(q) = \{q' \in q : q' = 2/0\}$, to

$$\|\mathbb{S}_{2}^{B}(4+\|q\| | \varphi(q), q, G) \| =$$

$$= \sum_{p=1}^{q^{2}(q)} \binom{6}{p} \cdot \|\mathbb{S}_{2}^{B}(4+\|q \setminus q^{2}(q)\| | \bullet, q \setminus q^{2}(q), G) \|$$
(10)

Dla przykładu

$$\|\mathbb{S}_{2}^{B}(8|\varphi(q), \{2/0, 2/0, 2/1, 1/0\}, G)\| = \sum_{p=1}^{2} \binom{6}{p} \cdot \|\mathbb{S}_{2}^{B}(6|(1,1), \{2/1, 1/0\}, G)\|.$$

Do osiągnięcia wyznaczonego celu pozostaje jeszcze określenie sposobu generowania nadgrafów, które mają przedłużenia $(\Psi_2(q,k-4) \neq \emptyset)$.

Zauważmy, że przedłużenia ψ' i ψ'' indukują nadgrafy podobne wtedy i tylko wtedy, gdy ich korzenie (ślady w warstwie) są węzłami podobnymi lub mają węzeł wspólny, a pozostałe (dwa) korzenie są węzłami podobnymi. Tak wiec:

$$\|\mathbb{S}_{2}^{B}(7|(0,2),\bullet,G)\| = \|\mathbb{S}_{2}^{B}(6|(0,2),\bullet,G)\|,$$
(11)

$$\|\mathbb{S}_{2}^{B}(7|(1,1),\bullet,G)\| = \|\mathbb{S}_{2}^{B}(6|(1,1),\bullet,G)\|,$$
(12)

$$\|\mathbb{S}_{2}^{B}(8|(1,1),\bullet,G)\| = \|\Psi(\{2/1,1/0\},2)\| \cdot \|\mathbb{S}_{2}^{B}(6|(1,1),\bullet,G)\|, \quad (13)$$

bowiem $\mathbb{Q}((1,1)) = \{2/1, 1/0\}$, a dla warstwy o charakterystyce $\{2/1, 1/0\}$, nie istnieją węzły podobne.

Zauważmy, że przedłużenie $\psi' \in \Psi_2(\{2/2, 1/0, 1/0\}, 1)$ (rys. 3a) generuje tyle nadgrafów, ile jest grafów G o ważonej gałęzi i co najwyżej dwóch węzłach oznaczonych różnymi barwami (węzeł może być oznaczony dwoma barwami). Barwa węzła rozróżnia ślady węzłów przedłużenia ψ' o charakterystykach 1/1 i 1/0 (w przypadku, gdy węzły te nie mają wspólnego śladu). Z formalnego punktu widzenia jednoznaczne przyporządkowanie barw węzłom można uważać za opisanie pewnej funkcji $h: A \rightarrow H$, gdzie A jest zbiorem węzłów grafu, a H-pewnym zbiorem elementów zwanych "barwami", przy czym funkcję h można opisać, nie abstrahując od jej jakościowej "barwnej" interpretacji, co jest istotne przy rozstrzyganiu podobieństwa grafów pokolorowanych.

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Tak więc

$$\|\mathbb{S}_{2}^{B}(8|\bullet,\{2/2,1/0,1/0\},G_{1})\| =$$

= 4² · (1+2⁻¹)+ $\|\overline{G}_{1}^{\bullet}(1,1;1,2)\| + \|\overline{G}_{1}^{\bullet}(1,1;2,2)\|,$ (14)

bowiem liczba takich nadgrafów (grafu G_1), generowanych przez przedłużenia ψ_1 oraz ψ_2 (rys. 3a), wynosi odpowiednio

$$4^{2} \cdot \sum_{s=1}^{4} s^{-1} \cdot \|\overline{G}_{1}(1,1|s)\| = 4^{2} \cdot (1+2^{-1}) \text{ oraz } \|\overline{G}_{1}^{\bullet}(1,1;1,2)\| + \|\overline{G}_{1}^{\bullet}(1,1;2,2)\|,$$

natomiast

$$\|\mathbb{S}_{2}^{B}(8|\bullet, \{2/2, 1/0, 1/0\}, G_{2})\| =$$

= 2 \cdot \|\bar{G}_{2}^{\bullet}(1, 1; 1, 2)\| + \sum_{w^{\bullet}=2}^{3} \|\bar{G}_{2}^{\bullet}(1, 1; 2, w^{\bullet})\|, (15)

bowiem liczba grafów G o ważonej gałęzi i dokładnie dwóch węzłach, oznaczonych różnymi barwami jest równa $\|\overline{G}^{\bullet}(1,1;2,3)\|$.

W analogiczny sposób otrzymujemy:

$$\|\mathbb{S}_{2}^{B}(8|\bullet,\{2/1,1/1,1/0\},G)\| =$$

$$= \|\Psi_{2}(\{2/1,1/1,1/0\},1)\|\cdot(\|\overline{G}^{\bullet}(1,1;1,2)\| + \|\overline{G}^{\bullet}(1,1;2,3)\|)$$
(16)

$$\|\mathbb{S}_{2}^{B}(8|(0,3),\bullet,G)\| = \|\overline{G}(1,3)\| + 2 \cdot \|\overline{G}(2,3)\| + 3 \cdot \|\overline{G}(3,3)\|$$
(17)

oraz

$$\|\mathbb{S}_{2}^{B}(8|(1,2),\bullet,G)\| =$$

$$= \|\Psi_{2}(\{2/0,2/1,1/0\},1)\|\cdot\|\mathbb{S}_{2}^{B}(7|(1,2),\bullet,G)\|-\|\bar{G}^{\bullet}(1,2;1,1)\|,$$
(18)

bowiem nadgrafy, indukowane przez przedłużenia ψ'' i ψ''' (rys.8), są podobne wtedy i tylko wtedy, gdy węzły e' i e'', mają wspólny ślad.

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

Rys. 8. Przedłużenia zbioru $\Psi_2(q(1,2),1)$

Rozpatrzymy (w końcu) przypadek, gdy k - (||q||+4) > 1 oraz warstwa ma węzły o jednakowej charakterystyce.

Zbiór $\Psi_2(q(0,2),2)$ zawiera dwa przedłużenia (rys. 9). Śladem każdego przedłużenia może być gałąź o wadze równej dwa lub dwie gałęzie o sumie wag równej dwa, przy czym węzeł e_1'' (albo e_2'' , $\mu^+(e_1'') \neq \mu^+(e_2'')$) przedłużenia ψ'' należy przypisać gałęzi, która jest jego śladem, co jest równoważne zwiększeniu o jeden wagi tej gałęzi. Tak więc

$$\|\mathbb{S}_{2}^{B}(8|(0,2),\bullet,G)\| = 2 \cdot \|\overline{G}(1,2)\| + \|\overline{G}(2,2)\| + \|\overline{G}(2,3)\|.$$
(19)

Rys. 9. Przedłużenia zbioru $\Psi_2(q(0,2),2)$

Po wykonaniu obliczeń okazuje się, że szeregi przeliczające, 2-optymalne struktury OD typu BGM, których składową silnej spójności jest struktura $G \in \{G_1, G_2\}$ (rys .1) mają postać

$$S_2^B(x \mid G_1) = x^4 + 2x^5 + 13x^6 + 105x^7 + 1031x^8 + \dots$$
 (20)

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

oraz

$$S_2^B(x \mid G_2) = x^4 + 6x^5 + 45x^6 + 407x^7 + 4041x^8 + \cdots,$$
(21)

a więc szereg przeliczający 2-optymalne struktury OD typu BGM, których składowa silnej spójności jest rzędu czwartego, ma postać

$$S_2^B(x) = 2x^4 + 8x^5 + 58x^6 + 512x^7 + 5072x^8 + \dots$$
(22)

4. Podsumowanie

Spójna *m*-optymalna struktura OD (zarówno typu BGM jak i PMC) ma dokładnie jedną składową silnej spójności (która jest strukturą *m*-optymalną, określonego typu), w której węzłach zagnieżdżone są korzenie (źródła) takiego digrafu acyklicznego, że każdy podgraf, utworzony przez usunięcie węzła bez następników, jest również strukturą *m*-optymalną danego typu.

Tak więc struktura 1-optymalna jest cyklem zorientowanym (rzędu co najmniej trzeciego), w którego węzłach zagnieżdżone są korzenie dendrytów. Struktury 1-optymalne można przeliczać korzystając z szeregu przeliczającego drzewa z korzeniem, podziałów liczb oraz ciągów liczb cyklicznie różnych [6].

Wiadomo [6], że szereg przeliczający struktury 1-optymalne ma postać

-

$$S_{1}(x) = x^{3} + 2x^{4} + 5x^{5} + 15x^{6} + 40x^{7} + 118x^{8} + 341x^{9} + 970x^{10} + 2792x^{11} + 7927x^{12} + 22540x^{13} + \dots$$

Przeliczanie struktur więcej niż 1-optymalnych napotyka na dwie zasadnicze przeszkody. Pierwszą z nich jest konieczność wyznaczenia zbioru składowych silnej spójności, które mogą indukować strukturę określonego rzędu i typu oraz zbadanie przekształceń automorficznych każdej z takich składowych. Zauważmy, że wykonanie tego zadania jest łatwiejsze dla struktur typu BGM niż PMC. Drugą przeszkodą (chyba większą niż pierwsza) jest określenie związków między podobieństwem nadgrafów a ich śladami w składowej silnej spójności (tych nadgrafów).

Z powyższego wynika, że przeliczanie 2-optymalnych struktur OD typu BGM jest zadaniem stosunkowo łatwym (w porównaniu z przeliczaniem 2-optymalnych struktur typu PMC lub struktur więcej niż 2-optymalnych).

W niniejszym artykule zaproponowano metodę określania związków między podobieństwem nadgrafów, a ich śladami za pomocą grafów ważonych i kolorowanych. Zamiast określania przekształceń automorficznych określonej

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

składowej silnej spójności (o nietrywialnej grupie węzłowej), generowane są dla niej grafy o określonej liczbie (oraz sumie wag) gałęzi i węzłów ważonych. Działania na takich grafach pozwalają rozstrzygać o podobieństwie indukowanych nadgrafów.

Trudności w przeliczeniu 2-optymalnych niesilnie spójnych struktur OD typu BGM (i to tylko do rzędu ósmego) charakteryzują trudności, które trzeba by przezwyciężyć, aby przeliczyć inne struktury OD (typu BGM lub PMC, o wyższej krotności diagnostycznej lub (i) wyższego rzędu).

Zauważmy, że (w rozpatrzonym przypadku) wszystkie 2-optymalne struktury OD typu BGM są indukowane tylko przez jedną z dwóch silnie spójnych struktur rzędu czwartego, przy czym jedna z nich jest strukturą o trywialnej grupie węzłowej. Z pracy [9] wiadomo natomiast, że liczby $\|\breve{G}_m^B(k')\|$ oraz $\|\breve{G}_m^P(k')\|$ kanonicznych reprezentantów klas podobieństwa, silnie spójnych, *m*-optymalnych, gdzie $2 \le m \le 4$, struktur OD (odpowiednio typu BGM oraz PMC) rzędu k', które indukują struktury rzędu ósmego, są następujące:

 $\|\breve{G}_{3}^{B}(5)\| = \|\breve{G}_{3}^{B}(6)\| = 5; \|\breve{G}_{4}^{B}(6)\| = 14; \|\breve{G}_{4}^{B}(7)\| = 59; \|\breve{G}_{4}^{B}(8)\| = 11; \\\|\breve{G}_{2}^{P}(5)\| = 8; \|\breve{G}_{2}^{P}(6)\| = 12; \|\breve{G}_{2}^{P}(7)\| = 16; \|\breve{G}_{2}^{P}(8)\| = 23; \|\breve{G}_{3}^{P}(7)\| = 153; \\\|\breve{G}_{3}^{P}(8)\| = 440.$

Próba generowania (niektórych) zbiorów $\breve{\mathbb{S}}_{m}^{B}(k')$ oraz $\breve{\mathbb{S}}_{m}^{P}(k')$, silnie spójnych, *m*-optymalnych, gdzie $2 \le m \le 4$, struktur OD (odpowiednio typu BGM oraz PMC) rzędu k', które indukują struktury rzędu ósmego, dała następujące rezultaty: $\|\breve{\mathbb{S}}_{3}^{B}(5)\| = 5$; $\|\breve{\mathbb{S}}_{3}^{B}(6)\| = 30$; $\|\breve{\mathbb{S}}_{4}^{B}(6)\| = 16$; $\|\breve{\mathbb{S}}_{2}^{P}(5)\| = 26$; $\|\breve{\mathbb{S}}_{2}^{P}(6)\| = 517$. Wyników tych nie można (jeszcze) traktować jako pewne.

Literatura

- Barsi F., Grandoni F., Maestrini P.: A Theory of Diagnosability of Digital Systems, IEEE Trans. On Comput. 6, 1976, s.585-593.
- [2] Harary F., Palmer E.: *Graphical Enumeration*, New York and London, Academic Press, 1973.
- [3] Krawczyk H.: *Analiza i synteza samodiagnozowalnych systemów komputerowych* Zeszyty Naukowe Politechniki Gdańskiej, Elektronika nr 64, Gdańsk, 1987.
- [4] Kulesza R.: Niektóre własności grafów opiniowania diagnostycznego, Krajowy Kongres Metrologii, Gdańsk'98, 1998, tom 5, s.81-88.

Biuletyn Instytutu Automatyki i Robotyki, 21/2004

- [5] Kulesza R.: *Podstawy diagnostyki sieci logicznych i komputerowych,* Instytut Automatyki i Robotyki, Wydział Cybernetyki Wojskowej Akademii Technicznej, Warszawa, 2000, s.222.
- [6] Kulesza R.: Metoda przeliczania 1-optymalnych struktur opiniowania diagnostycznego, Biuletyn Instytutu Automatyki i Robotyki, Wojskowa Akademia Techniczna, Warszawa, 2001, nr 16, s.19-34.
- [7] Kulesza R.: Niektóre własności 1-diagnozowalnych struktur typu PMC, Biuletyn Instytutu Automatyki i Robotyki, Wojskowa Akademia Techniczna, Warszawa, 2003, nr 18, s.3-18.
- [8] Kulesza R.: Struktury samodiagnozowalne w technice cyfrowej, diag'2003: V Krajowa Konferencja "Diagnostyka Techniczna Urządzeń i Systemów", 13-17 października 2003, Ustroń, s.165-173.
- [9] Kulesza R.: Problemy przeliczania optymalnych struktur opiniowania diagnostycznego, Biuletyn Instytutu Automatyki i Robotyki, Wojskowa Akademia Techniczna, Warszawa, 2004, nr 20.
- [10] Zieliński Z.: Komputerowo wspomagane wyznaczanie najtańszych 2-diagnozowalnych struktur typu PMC, Biuletyn Instytutu Automatyki i Robotyki, Wojskowa Akademia Techniczna, Warszawa, 2003, nr 18, s.33-44.

Recenzent: prof. dr hab. inż. Stanisław Paszkowski Praca wpłynęła do redakcji: 12.10.2004

Biuletyn Instytutu Automatyki i Robotyki, 21/2004