
 

Electron Technology – Internet Journal  35 (2003), 3, p. 1−5,   Institute of Electron Technology, Warszawa 

COMPACT DEVICE MODELING USING VERILOG-AMS AND ADMS 

L. LEMAITRE1, W. GRABIŃSKI1, C. MCANDREW2

1Motorola, Geneva Modeling Center, 207 route de Ferney, CH-1218 Le Grand Saconnex, Switzerland. 
2Motorola, Phoenix, USA 

Received March 25, 2003; modified June 6, 2003; published July 4, 2003 

ABSTRACT 

This paper shows how high level language such as Verily-AMS can serve as support for 
compact modeling development of new devices. First section gives a full Verily-AMS code of 
a simplified bipolar transistor. Each part of the code is carefully examined and explained. 
Second section compares different implementations of the simplified bipolar transistor in 
different spice simulators. ADMS, an open-source tool developed at Motorola, performs the 
implementation from Verily-AMS to simulators. Third section concludes the paper by 
describing the implementation of the EKV model into ADS using the compact model interface 
provided by Agilent. 

1. Introduction 

Emerging markets of RF applications require 
better modeling of electrical effects of micro-
semiconductor device and technologies. 

As process fabrications of the semiconductor 
devices approach dimensions below 0.1-micron 
meter the electrical effects that were negligible in the 
past could not be ignored any more. These new 
effects need to be embedded into standard compact 
models such as varactors, MOSFETs, BJTs as well as 
passive RF devices. Moreover, new compact devices, 
which, potential has seldom been explored until 
recently, are coming to market. 

On-wafer inductances are good examples of these 
new compact devices. Today a lot of effort is under 
way to better understand the physical behavior of on-
wafer inductances in sub-microns semi-conductor 
process. Better tuning of standard compact devices or 
building new compact devices implies a big 
investment of time and effort. Furthermore, compact 
models should be implemented into different 
electrical circuit simulators. The implementation 
involves error-prone operations such as the 
calculation of symbolic derivatives of complex 
expression. These operations have to be repeated for 
each electrical circuit simulator. 

Most of the tasks involved can easily be done by 
automated using dedicated software tools with 
standardized high-level behavioral modeling 
language. 

This paper presents a tool called ADMS 
(Automatic Device Model Synthesizer) [1]. ADMS 
reduces the implementation efforts of compact device 
definition using Verilog-AMS model description [2]. 
At the same time, it offers a way to substantially 
improve the robustness of new compact device 
models. Implementation of the same model across 
different electrical circuit simulators is automated. 
Comparisons between the different implementations 
are straightforward. Fix of bugs found in one 
implementation can easily be propagated to other 
implementations. 

2. HBT Model Description 

This section presents a behavioral description of 
a simplified HBT model. The behavioral description of 
a compact model is coded in Verilog-AMS language. 
Verilog-AMS is a high-level behavioral description 
language for analog circuits. The language is intuitive 
and easy to understand. Its syntax is close to c 
language syntax. Figure 1 shows the branch 
assignments in the HBT model. Figure 2 gives the full 
Verilog-AMS code that describes the HBT model. 

Let us go through the code and give some details 
of the syntax used. 

The code is divided into three main sections: 
1) the header section, 
2) the declaration section, 
3) the constitutive equations section. 



Electron Technology – Internet Journal  35 (2003), 3  (http://www.ite.waw.pl/etij/) 2 

c

e

b s (not used)

 
Fig. 1. Branch assignment in the HBT model. 

 
 
`define NPN –1 
`define PNP +1 
module HBT(c,b,e,s); 
// Nodes 
   input        c,b; // input nodes 
   output       e, s;// output nodes 
   electrical   c,b,e,s; // all electrical 
// Branches 
   branch (b,c)           bc; 
   branch (c,e)           ce; 
   branch (e,c)           ec; 
   branch (b,e)           be; 
// Parameters 
   parameter   real  is      = 20e-12; 
   parameter   real  bf      = 225; 
   parameter   real  br      = 5; 
   parameter   real  nf      = 1.0; 
   parameter   real  nr      = 1.0; 
   parameter   integer type      = `NPN; 
// Variables 
   real Tdev, Vtv; 
   real Ifi, Ibf; 
   real Iri, Ibr; 
   real arge,expe; 
   real argc,expc; 
//      Analog section 
   analog begin 
     Tdev  =  $temperature; 
     Vtv   =  1.380662e-23*Tdev/1.602189e-19; 
     if ( type == `NPN ) begin 
        arge = V(be)/(nf*Vtv); 
        argc = V(bc)/(nr*Vtv); 
     end else if ( type == `PNP ) begin 
        arge = -V(be)/(nf*Vtv); 
        argc = -V(bc)/(nr*Vtv); 
     end 
       expe = exp(arge); 
       expc = exp(argc); 
       Iri = is*(expc-1.0); 
       Ibr = Iri/br; 
       Ifi  = is *(expe-1.0); 
       Ibf  = Ifi/bf; 
   begin 
        I(ec) <+-Iri; 
        I(ce) <+-Ifi; 
        I(be) <+-Ibf; 
        I(bc) <+-Ibr; 
     end 
   end 
endmodule 

Fig. 2. Verilog-AMS definition of a HBT device. 
 

In the header, section macros can be defined. The 
use of macros helps improve the clarity of Verilog-
AMS coding. Macros can be placed at any place in 
the code. 

The declaration section is divided into three main 
sub-sections: 
1. The node declaration. Terminal nodes can be 

declared as input node, output node or inout node. 
They are all electrical nodes. Verilog-AMS allows 
the use of various types of nodes such as 

mechanical nodes. Internal nodes can also be 
defined. 

2. The branch definition. Names of branch across two 
nodes can be defined. This makes the coding of 
a model clearer. 

3. The parameter declaration. Device parameters are 
defined in this section. Special attributes can be set 
to parameters. A parameter can be defined as 
a model parameter or as an instance parameter. 
Values of a model parameter only depend on the 
process characteristics. Values of instance 
parameters depend on geometries of the device. For 
the sake of simplicity, all parameters will be 
declared as model parameters, which is the default 
declaration. 
The constitutive equations section defines the 

relationship between voltage potentials of the devices 
and branch currents. 

In example presented Fig. 2 an if-based switch 
activates either the constitutive equations of an n-type 
HBT, or the constitutive equations of a p-typed HBT. 
The selection of the switch is determined by the value 
of parameter `type’. 

The constitutive equations compute the magnitude 
of current flowing across the different branches of the 
HBT device. Once the current values are calculated, 
the values are “loaded” into the device by the means 
of the special branch contribution symbol “<+”. 

In the next Section we will present and discuss the 
implementation of the HBT device into three 
different electrical circuit simulators. 

3. HBT model implementation 

This Section will present the results of the 
implementations of the HBT compact device model 
described in the previous Section. 

3.1. Basics on model implementation 

A compact device model description is made of 
equations. These equations describe the relationship 
that exists between terminal voltages of the model, 
and the branch currents of the model. 

When these equations are well designed, and fit 
with the physics of the device model its 
implementation into electrical circuit simulators can 
begin. 

Most of the time implementing a device model 
into a new electrical circuit simulator means 
formatting the constitutive equations of the model 
into c source code. 

Programming interfaces are provided within 
electrical circuit simulators. Programming interfaces 
are guidelines for c source code programmers. They 
give access to embedded routines of the circuit 
simulators. Most of them provide a support to create 
new model parameters. They give access to more 



Electron Technology – Internet Journal  35 (2003), 3  (http://www.ite.waw.pl/etij/) 3 

sensitive data like the jacobian builders of the 
Newton-Raphson algorithms. 

3.2. Netlist used for test-bench 

In the following paragraph, a basic circuit will be 
used to test-bench the implementation of the device 
model into different simulators. Netlist of the circuit 
is given in Fig. 3.  

 
* hbt – mica netlist 
* test-bench for basic implementation test 
vcc 1 0 10 
r1 1 4 10k  
r2 4 0 10k 
r4 5 0 2k 
c2 4 0 1e-8 
c4 5 0 1e-5 
c5 1 0 1e-5 
q1 2 4 5 mod1 
.model mod1 npn level=3 
.option dcmethod=pseudotran 
.control 
op 
show mod1 
.endc 

Fig. 3. Basic test-bench netlist. 

3.3 Model implementation in MICA 

MICA [3] is the internal electrical simulator of 
Motorola. MICA is a Motorola-proprietary internal 
product. MICA provides a programming interface for 
new device model implementation called DPI, 
acronym of Device Programming Interface. 

 
Using /nopt/mica1.2.0/bin/hppa8000/mica 
Saving 10 output vectors. 
DC analysis, iter 18, loads 18, 
dx 1.624781e-17, error 5.780582e-17  
Note: Option temp set to 27 
HBT_m: 
        level        level number     = 3 
        is           no description   = 2E-11 
        bf           no description   = 225 
        br           no description   = 5 
        nf           no description   = 1 
        nr           no description   = 1 
        type         no description   = -1 
rb#i = 3.495725e-04 
rc#i = 7.865381e-02 
re#i = 7.900338e-02 
v#Bint = 6.504275e-01 
v#B = 1.000000e+00 
v#C = 1.000000e+00 
v#Cint = 9.213462e-01 
v#Eint = 7.900338e-02 
vb#i = -3.49572e-04 
vc#i = -7.86538e-02 

Fig. 4. Simulation results of MICA dc analysis. 
 

The ADMS package includes a source code 
generator for the programming interface of MICA. 
The source code generator is simply called 
admsMica. From the Verilog-AMS description 
presented in the previous Section admsMica will 
create a set of ready-to-compile-and-link c source 

files. A shared library is created after linking all 
compiled files created by admsMica. At run time 
MICA will load the shared library and the new HBT 
device will be ready for use. Figure 4 shows the 
simulation results of the test-bench circuit presented 
in Fig. 3. 

3.4. Model implementation in SPECTRE 

SPECTRE [4] is the electrical circuit simulator of 
CADENCE. It is a commercial product. The 
simulator provides a programming interface called 
CMI, acronym of Compiled-Model Interface. The 
CMI is not distributed with the simulator. Access to 
the CMI is granted upon special request to 
CADENCE. 

The ADMS package includes the source code 
generator for SPECTRE called admsSpectre. After 
running admsSpectre ready-to-compile-and-link 
c source files are created. In its present version 
SPECTRE does not offer the possibility to load new 
compact device shared library at run time. All the 
binary that builds SPECTRE should be linked with 
the compiled files of the HBT device models. As 
a result, a new executable is created and ready to use. 
Figure 5 gives the simulation results of the test-bench 
circuit of Fig. 3. 
 
 
spectre (ver. 4.4.3.cmi.solaris. -- 17 Nov 00). 
Simulating `HBT_spectre.ckt' on thun 
at 4:14:11 PM, Fri Apr 19, 2002. 
Circuit inventory: 
nodes 5 
equations 7 
HBT 1 
resistor 3 
vsource 2 
setTnom: `tnom' set to 27 C. 
********************* 
DC Analysis `opPoint' 
Operating point computed in DC analysis 
`opPoint' at T = 27 C. 
V(B) = 1 V 
V(Bint) = 650.428 mV 
V(C) = 1 V 
V(Cint) = 921.346 mV 
V(Eint) = 79.0034 mV     
I(vb:p) = -349.572 uA 
I(vc:p) = -78.6538 mA 
Instance: HBT 
Model: myhbt 
Primitive: HBT 
c : V(Cint) = 921.346 mV 
b : V(Bint) = 650.428 mV 
e : V(Eint) = 79.0034 mV 
s : val(0) = 0 
Total Power Dissipation = 79.0034 mW 
Convergence achieved in 22 iterations. 
Total time required for dc analysis `opPoint' 
was 10 ms. 
Aggregate audit (4:14:13 PM, Fri Apr 19, 2002): 
Time used: CPU = 120 ms, elapsed = 2 s, util.= 
6%. 
Virtual memory used = 631 kbytes. 
spectre completes with  
0 errors, 0 warnings, and 0 notices. 

Fig. 5. Simulation results of SPECTRE dc analysis. 
 



Electron Technology – Internet Journal  35 (2003), 3  (http://www.ite.waw.pl/etij/) 4 

3.6. Model implementation in ADS 

ADS [5] is the commercial electrical circuit 
simulator of Agilent. ADS is a commercial product. 
Its programming interface is called UMI, acronym of 
User Model Interface. The UMI is distributed with 
the ADS package. It is well documented and 
available to any users of ADS. 

The source code generator of ADS is called 
admsAds. Like SPECTRE, the current version of 
ADS does not support run-time loading of compact 
device models. However, work on the implemen-
tation of this feature is on going. Figure 6 shows the 
simulation results of the test-bench circuit presented 
in Fig. 3. 

 
HPEESOFSIM  (ver. "170" rev. "200") 
Copyright Agilent Technologies, 1989-2001. 
DC DC1[1] <HBT_ads.ckt>   
Convergence achieved in 10 iterations. 
DC Operating Point: 
  V(Cint) = 921.346 mV 
  V(Bint) = 650.428 mV 
  V(Eint) = 79.0034 mV 
  V(C) = 1 V 
  V(B) = 1 V 
  vb.i = -349.572 uA 
  vc.i = -78.6538 mA 
---------------------------------------------- 
Simulation finished: dataset `networks' written 
in: 
  
`/user/lemaitre/_ADS/api_170_200/compact_device
s/hbt_prj'. 
---------------------------------------------- 
Resource usage: 
    Total stopwatch time: 24.57 seconds. 

Fig. 6. Simulation results of ADS dc analysis. 

3.7. Comments on the different 
implementations 

From above simulation results, we can easily 
notice that all implementations of the HBT device 
model are “aligned”. Discrepancies between two 
implementations are mostly limited to the way 
simulators are printing results. Input Model 
parameters have the same names and the same 
default values. Device topologies are equivalent 
between different circuit simulators. Calculated 
values of voltage potentials and current flows are 
identical up to the 6th digit. Model implementers can 
really compare numerical results between two 
implementations. 

This makes the maintenance of model 
development a lot easier. Improvements made on the 
robustness of a compact device model will propagate 
easily to all implementations. Weaknesses on the 
behavioral implementation of the model can be 
detected in one simulator and fixes to the weakness 
can be propagated to all other simulators. 

4. ADMS MOSFET modeling example 

This Section concludes the paper by describing 
the implementation of a MOSFET model into ADS 
using the user model interface (UMI) provided by 
Agilent [5]. The EPFL-EKV compact model [6−8] is 
used to illustrate the implementation procedure.  

 
Fig. 7. ADS schematic view of a simple circuit with the EKV 
model implemented using ADMS tool. 
 

Creating new ADS model consists of three main 
steps: Defining the parameters that the user will enter 
from the schematic, Writing the c-code itself and 
Defining the symbols and the corresponding pins. 
Following these steps a new ADS model can be used 
in linear, nonlinear (i.e. harmonic balance), transient 
and circuit envelope simulation modes. The ADMS 
processes the first two steps. Based on the Verilog-
AMS compact model description, the ADMS tool 
generated all necessary c-code to handle model and 
instance parameters, model codes including all 
additional functions, as well as required derivatives 
in respect to terminal voltages. The ADMS tool also 
generates needed make files to simplify procedure of 
compiling and linking new model with the simulator. 
 

 
Fig. 8. Results of output current and conductances simu-
lations. 
 

The only user responsibility is to create a new 
model and its instance symbols for the ADS 
schematic editor. An example of a simple schematic 



Electron Technology – Internet Journal  35 (2003), 3  (http://www.ite.waw.pl/etij/) 5 

with the EKV model for DC simulations is shown in 
Fig. 7. 

Figure 8 shows corresponding DC simulation 
results of output characteristics (drain currents, Id, 
and drain conductances, gds, respectively). 

5. Conclusions 

The ADMS tool offers an excellent modeling 
environment. It allows faster development of 
advanced models and faster implementation into 
commercial IC design tools. Existing models could 
be smoothly extended to include important effects 
such as thermodynamical effects [9]. Furthermore, 
developers of new compact models (i.e. [10], [11] 
now have access to the coherent and highly reliable 
modeling framework simplifying model evaluation 
procedures and verification tasks across different 
simulation platforms and operating systems. 

REFERENCES 

1. L. LEMAITRE, C. MCANDREW, S. HAMM , ADMS – Auto-
matic Device Model Synthesize, CICC 2002, Florida, USA. 

2. Verilog-AMS Language Reference Manual, Open Verilog 
Int., 1999. 

3. MICA Device Programming Interface, Documentation and 
Programmer's Guide, Motorola Internal Document, 1998. 

4. SPECTRE CMI Reference Manual, Cadence Design 
System, 1995. 

5. Analog/RF User-Defined Models, Agilent Technologies, 
April 2001 

6. C. ENZ, F. KRUMMENACHER, E. VITTOZ, An Analytical MOS 
Transistor Model Valid in All Regions of Operation and 
Dedicated to Low-Voltage and Low-Current Application, 
J. Analog Integrat. Circ. a. Signal Process., 1995, 8, 83−114, 
Kluwer Acad. Pub.,  

 7. M. BUCHER, C. LALLEMENT, C. ENZ, F. THÉODOLOZ, 
F. KRUMMENACHER, The EPFL-EKV MOSFET Model 
Equations for Simulation, Version 2.6, Technical Report, 
Electronics Laboratory, Swiss Federal Institute of 
Technology Lausanne, (EPFL), June 1997. 

    Web Resources: http://legwww.epfl.ch/ekv. 
 8. M. BUCHER, Analytical MOS Transistor Modeling for 

Analog Circuit Simulation, Ph.D. Thesis No. 2114, 1999, 
EPFL, Lausanne. 

 9. C. LALLEMENT ET AL., High Level Description of 
Thermodynamical Effects in the EKV 2.6 Most Model, 
Proc. 9th Int. Conf. on Mixed-Signal Design (MIXDES), 
Wrocław, Poland, June 2002.  

10. T. L. CHEN, G. GILDENBLAT, Analytical Approximation for 
the MOSFET Surface Potential, Solid-St. Electron., 2001, 
45, 3335. 

11. M. BUCHER ET AL., EKV 3.0: An Analog Design-Oriented 
MOS Transistor Model, Proc. 9th Int. Conf. on Mixed-
Signal Design (MIXDES), Wrocław, Poland, June 2002. 

 
 

http://legwww.epfl.ch/ekv

