PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compact modeling of low-power and RF analogue MOSFET devices

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The technology of CMOS very large-scale integrated circuits (VLSI's) achieved remarkable advances over the last 25 years and the progress is expected to continue well into this century. The progress has been driven by the downsizing of the key devices: MOSFETs. Approaching these dimensions, MOSFET characteristics cannot be accurately predicted using classical modeling methods currently used in the most common MOSFET models such as BSIM3/4, EKV v2.6, HiMOS, MOS9 etc., without introducing large number of empirical parameters. Various physical effects that are needed to be considered while modeling UDSM devices: quantization of the inversion layer, mobility degradation, carrier velocity saturation and overshoot, polydepletion effects, bias dependent source/drain resistances and capacitances, vertical and lateral doping profiles, etc. In this paper, we will discuss the progress in CMOS technology and anticipated difficulties of the sub-O.25 um VLSI downsizing. Subsequently, basic MOSFET modeling methodologies that are more appropriate for low power and RF analogue applications of UDSM MOSFETs will be presented as well.
Słowa kluczowe
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Motorola, Geneva Modeling Center, 207 route de Ferney, CH-1218 Le Grand Saconnex, Switzerland
Bibliografia
  • 1.G. E. Moore, Process in Digital Integrated Circuits, IEDM Tech. Dig. Dec. 1975, 11.
  • 2. Semiconductor Industry Association, The National Technology Roadmap for Semiconductors, 2000-2002.
  • 3. R. H. Dennard, F. H. Gaenssen, H.-N. Yu, V. L. Rideout, E. Bassous, A. R. LeBlank, Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions, IEEE J. Solid State Circuits, 1974, SC-9. 256-268.
  • 4. D. FOTY, MOSFET Modeling for Circuit Simulation, IEEE Circuit & Devices. July 1998, 26-31.
  • 5. Y. Chen, M. C. Jeng, Z. Liu, J. Huang, M. Chen, P. K. Ko, C. Hu, A Physical and Scalable I-V Model BSIM3v3 for Analog/Digital Circuit Simulations, IEEE Trans. Electron Dev. 1997, ED-44. 2, 277. Internet resources: www-device.EECS.Berkeley.EDU/~bsim3/
  • 6. R. Velghe, D. B. M. Klaassen, F. M. Klaassen, Compact MOS Modeling for Analog Circuit, IEDM Tech. Digest, 484-488, 1993. Internet resources: www.eu3.semiconductors.com/Philips_Models/
  • 7. C. Enz, F. Krummenacher, E. A. Vittoz, Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low Voltage and Low Current Applications, Analog IC Signal Proc. 1995, 8, 83-114, Internet resources: legwww.epfl.ch/ekv/
  • 8. K. Joardar, K. K. Gullapalli, C. C. McAndrew, M. E. Burnham, A. Wild, An Improved MOSFET Model for Circuit Simulation, IEEE Trans. on Electron Dev., Jan. 1998, 45, 1, 134-148.
  • 9. G. Gildenblat, T. L. Chen, P. Bendix, Closed-Form Approximation for the Perturbation of MOSFET Surface Potential by Quantum-Mechanical Effects, Electron. Lett., June 2000, 36, 12, 1072-1073.
  • 10. G. Gildenblat, T. L., Chen, P. Bendix, Analytical Approximation for Perturbation of MOSFET Surface Potential by Polysilicon Depletion Layer, Electron. Lett., Oct. 1999,35, 22, 1974 1976.
  • 11. G. Gildenblat, T. L. Chen, P. Bendix, Computationally Efficient Implementation of Charge Sheet Model [MOSFET], Electron. Lett., May 1999, 35, 10, 843-844
  • 12. H. S. Momose et al., 1.5nm Direct-Tunneling Gate Oxide Si MOSFET’s, IEEE Trans. Elec. Dev., Aug. 1996, 43(8), 1233.
  • 13. W.-C. Lee, C. Hu, Modeling Gate and Substrate Currents due to Conduction- and Valence-Band Electron And Hole Tunneling, 2000 Symp. on VLSI Tech., 198, 2000, 198.
  • 14. K. M. Cao, W.-C. Lee, W. Liu, X. Jin, P. Su, S. K. H. Fung, J. X. An, B. Yu, C. Hu, BSIM4 Gate Leakage Model Including Source-Drain Partition, IEDM Technical Digest, 2000.
  • 15. S.-M. Sallese, M. Bucher, Ch. Lallement, Improved Analytical Modeling of Polysilicon Depletion in MOSFETs for Circuit Simulation, Solid-St. Electron., 2000, 44, 905-912.
  • 16. G. Gildenblat, T. L. Chen, P. Bendix, Analytical Approximation for Perturbation of MOSFET Surface Potential by Polysilicon Depletion Layer, Electron. Lett., 1999, 35, 22, 1974-1976.
  • 17. M. Bagheri, Y. Tsividis, A Small Signal dc-To-High-Frequency Nonquasistatic Model for the Four-Terminal MOSFET Valid in All Regions of Operation, IEEE Trans. Electron Dev., 1985, ED-32(11),2383-91.
  • 18. L. F. Tiemeijer, P. W. H. de Vreede, A. J. Scholten, D. B. M. Klaassen, MOS Model Nine Based Non-Quasi-Static Small-Signal Model for RF Circuit Design, Proc. of the 29th Europ. Solid-State Device Research Conf. ESSDERC, Leuven, Belgium, 1999, 652-5.
  • 19. A. I. A. Cunha, M. C. Schneider, C. Galup-Montoro, An MOS Transistor Model for Analog Circuit Design, IEEE Solid-St. Circ, 1998; 33(10), 1510-9.
  • 20. M. SALLESE, A.-S. Porret, A Novel Approach To Charge-Based Non-Quasi-Static Model of the MOS Transistor Valid in All Modes of Operation, Solid-St. Electron., 2000, 44, 887-894.
  • 21. S. F. Tin, A. A. Osman, K. Mayaram, Comments on a Small-Signal MOSFET Model for Radio Frequency IC Applications, IEEE Trans. on CAD of IC a. Syst., April 1998, 126,372-274.
  • 22. M. Bucher, W. Grabinski, EKV MOS Transistor Modeling and RF Application, Hewlett-Packard RF MOS Modeling Seminar, Munich, Febr. 16, 1999.
  • 23. F. Krummenacher, M. Bucher, W. Grabinski, RF MOSFET Modeling Approach Based on the EPFL-EKV Model, Int. Workshop on Low Power RF Integrated Circuits, Lausanne, Oct. 19-20, 1999.
  • 24. F. Krummenacher, W. Grabinski, M. Bucher, Advances in RF CMOS Modeling Based on the PFL-EKV Model, Workshop on RF CMOS Transceivers, Pavia, June 20-21,2000.
  • 25. W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal, J. P. Mattia, RF MOSFET Modeling Accounting for Distributed Substrate and Channel Resistances with Emphasis on the BSIM3v3 SPICE Model, Proc. Int. Electron Devices Meeting, Dec. 1997, 309-312.
  • 26. D. R. Pehlke, M. Schroter, A. Burstein, M. Mtloubian, M. F. Chang, High-Frequency Application of MOS Compact Models and Their Development for Scalable RF MOS Libraries, Proc. IEEE Custom Integrated Circuits Conf. May 1998, 219-222.
  • 27. L. F. Timelier, D. B. M. Klassen, Geometry Scaling of the Substrate Loss of RF MOSFETs, Proc. Europ. Solid-State Dev. Res. Conf., Sept. 1998, 481 483.
  • 28. A. van der Ziel, Noise in Solid-State Devices and Circuits, New York, Wiley, 1986.
  • 29. H. E. Halladay, A. van der Ziel, On the High Frequency Excess Noise And Equivalent Circuit Representation of the MOSFET with n-Type Channel, Solid-St. Electron., 1969, 12, 161-176.
  • 30. F. M. Klaassen, J. Prins, Noise in Field-Effect Transistors at Very High Frequencies, IEEE Trans. Electron Dev., Nov. 1969, ED-16, 952-957.
  • 31. E. Dubois, E. Robilliart, Nonquasistatic Transient Model of Fully-Depleted SOI MOSFET and Its Application to the Analysis of Charge Sharing in an Analog Switch, IEEE Electron Dev. Lett., Jan. 2002, 23, 1, 43-45.
  • 32. S. Monfray, T. Skotnicki, Y. Morand, S. Descombes, P. Coronel, P. Mazoyer, S. Harrison, P. Ribot, A. Talbot, D. Dutartre, M. Haond, R. Palla, Y. Le Friec, F. Leverd, M.-E. Nier, C. Vizioz, D. Louis, 50 nm-Gate All Around (GAA)-Silicon On Nothing (SON)-Devices: a Simple Way to Co-Integration of GAA Transistors within Bulk MOSFET Process, VLSI Technology Digest of Technical Papers 2002 Symp., 2002, 108-109, June 11-13, 2003.
  • 33. Bin Yu; L. Chang; S. Ahmed, H. Wang; S. Bell, Chih-Yuh Yang; C. Tabery, Chau Ho; Qi Xiang, Tsu-Jae King, J. Bokor, C. Hu, M.-R. Lin, D. Kyser, FinFET Scaling to 10 nm Gate Length, IEDM '02. Digest. Int., Dec. 8-11,2002, 251-254.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0013-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.